Глия. Виды глии. Функции и Особенности глиальных клеток. Нейроглия. Морфофункциональная характеристика. Классификация нейроглии. Астроглия и эпендимная глия. Строение. Локализация. Функции Нейроглия и ее функции

Помимо нейронов к нервной ткани относятся клетки нейроглии - пей- роглиоциты. Они были открыты в XIX в. немецким цитологом Р. Вир- ховым, который определил их как клетки, соединяющие нейроны (греч. yXoia - клей), заполняющие пространства между ними и обеспечивающие их питание. В дальнейших исследованиях было выявлено, что нейрогли- оциты - очень обширная группа клеточных элементов, отличающихся своим строением, происхождением и выполняемыми функциями; что гли- оциты присутствуют не только в структурах ЦНС, но и в периферической НС. Стало понятно, что нейроглия функционирует в мозгу не только как трофическая (питающая) или опорная ткань. Глиальные клетки принимают также участие и в специфических нервных процессах, активно влияя на деятельность нейронов.

Клетки нейроглии имеют ряд общих черт строения с нейронами (рис. 2.11, 2.12). Так, в цитоплазме глиоцитов помимо других органоидов найден тигроид (вещество Ниссля); глиальные клетки, как и нейроны, имеют отростки. В мембране глиоцитов имеются разнообразные белковые каналы, белки-рецепторы, белки-транспортеры и белки-насосы.

Рис. 2.11.

Вместе с тем глиоциты значительно меньше по размеру, чем нейроны (в 3-4 раза), и их в 8-10 раз больше, чем нервных клеток. Отростки глиальных клеток не дифференцированы ни по строению, ни по функциям. Большинство глиальных клеток сохраняют способность к делению в течение всей жизни организма. Из-за этой особенности они (когда такое деление приобретает патологический характер) могут являться основой образования опухолей в НС - глиом.

Увеличение массы мозга после рождения также идет, в частности, за счет деления и развития клеток нейроглии. В отличие от нейронов глиоциты не способны генерировать электрические сигналы (потенциалы действия) и проводить их по своим отросткам. Друг с другом глиоциты образуют многочисленные щелевые контакты, но с нейронами таких контактов нет, хотя к телам и дендритам нервных клеток отростки глиальных клеток могут подходить очень близко.

На сегодняшний день достоверно показано, что нейроглия в составе нервной ткани выполняет не только опорные и трофические функции, но и принимает участие в формировании НС, ее развитии, регенерации. Глиальные клетки принимают также участие в специфических нервных процессах, активно влияя на деятельность нейронов.

Глиоциты ЦПС представлены клетками макроглии, к которым относятся астроциты, олигодендроциты, эпендимоциты и клетки радиальной глии, а также клетками микроглии. Глиоциты периферической НС представлены шванновскими клетками и клетками ганглионарной глии (клетки-сателлиты) (рис. 2.12).

Рис. 2.12.

а - олигодендродит, образующий миелиновую оболочку; б - олигодендроцит, образующий волокна кабельного типа; в - протоплазматический астроцит; г - волокнистый астроцит; д - радиальный глиоцит; е - эпендима; ж - амебоидная

микроглия; з - ветвистая нейроглия

) состоит из тела клетки (сомы), отростков (аксонов и дендритов ) и концевых пластинок. С помощью дендритов нейроны воспринимают, а посредством аксонов передают . На периферии покрыты , образующими миелиновую оболочку с высокими изолирующими свойствами.

Передача возбуждения происходит в нервных окончаниях (синапсах), которые являются местом контакта между нейронами, а также между нейронами и мышечными клетками. В концевых пластинках хранятся химические вещества, нейромедиаторы, выполняющие сигнальные функции. При поступлении медиаторы выделяются в синаптическую щель, передавая возбуждение нейронам или мышечным клеткам.

Для нервных клеток характерно высокое содержание липидов - 50% от сухой массы. Фракция липидов включает разнообразные фосфо-, глико- и сфинголипиды.

. В отличие от нервных клеток, глиальные клетки обладают большим разнообразием. Их количество в десятки раз превышает количество нервных клеток. В отличие от нервных клеток, глиальные способны делиться, их диаметр значительно меньше диаметра нервной клетки и составляет 1,5-4 микрона.

Долгое время считали, что функция глиоцитов несущественна, и они выполняют лишь опорную функцию в нервной системе. Благодаря современным методам исследования, установлено, что глиоциты выполняют ряд важных для функций: опорная, разграничительная, трофическая, секреторная, защитная.

Среди глиоцитов, по морфологической организации, выделяют ряд типов: эпендимоциты, астроциты.

Эпендимоциты образуют плотный слой клеток, элементов, выстилающих спинномозговой канал и желудочки . В процессе онтогенезе, эпендимоциты образовывались из спонгиобластов. Эпендимоциты представляют собой слегка вытянутые клетки с ветвящимися отростками. Некоторые эпендимоциты выполняют секреторную функцию, выделяя биологически активные вещества в кровь и в желудочки мозга. Эпендимоциты образуют скопления на капиллярной цепи желудочков мозга; при введении в кровь красителя, он накапливается эпендимоцитах, это свидетельствует о том, что последние выполняют функцию гематоэнцефалического барьера.

Астроциты выполняют опорную функцию. Это огромное количество , имеющих множество коротких отростков. Среди астроцитов выделяют 2 группы:

  • плазматические клетки
  • волокнистые астроциты

Олигодендроциты – крупные глиальные клетки, часто сконцентрированы вокруг и поэтому называются сатиллитными глиацитами. Их функция очень важна для трофики нервной клетки. При функциональных перенапряжениях нервной клетки, глиоциты способны прореферировать вещества поступающие путем пиноцитоза в нервную клетку. При функциональных нагрузках, вначале происходит истощение синтетического аппарата глиальных клеток, а затем нервных. При восстановлении (репарации), вначале восстанавливаются функции нейронов, а затем – глиальных клеток. Таким образом, глиоциты принимают участие в обеспечении функций нейронов. Глиальные клетки существенным образом способны влиять на трофику мозга, а также на функциональный статус нервной клетки.

Нервная система среди других функциональных систем организма занимает особое положение. Она обеспечивает взаимосвязь организма с окружающим миром. Рецепторы реагируют на любые сигналы внешней и внутренней среды, преобразуя их в потоки нервных импульсов, которые поступают в центральную нервную систему. На основе анализа потоков нервных импульсов, кодирующих информацию о свойствах раздражителей, мозг формирует адекватный ответ.

Вместе с эндокринными железами нервная система регулирует работу всех органов. Эта регуляция осуществляется благодаря тому, что спинной и головной мозг связаны нервами со всеми органами двусторонними связями. От органов в центральную нервную систему поступают сигналы об их функциональном состоянии, а нервная система, в свою очередь, посылает сигналы к органам, корректируя их функции и обеспечивая все процессы жизнедеятельности - движение, питание, выделение и другие. Нервная система обеспечивает координацию деятельности клеток, тканей, органов, систем органов. При этом организм функционирует как единое целое.

Нервная система является материальной основой психических процессов: внимания, памяти, речи, мышления и др., с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.

Основной тканью, из которой образована нервная система, является нервная ткань (кле́тка - структурно-функциональная элементарная единица строения и жизнедеятельности организма; ткань - это совокупность клеток и межклеточного вещества, сходных по строению и выполняемым функциям). Она отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество.

Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции центральной нервной системы. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в отношении 10:1 соответственно.

Клетки нейроглии плотно окружают значительную часть сосудистой капиллярной сети в мозго-вой ткани. Выросты глиальных клеток могут располагаться с одной стороны на нейроне, с другой – на кровеносных сосудах. Это указывает на их важное значение в передаче питательных веществ и кисло-рода из крови в нервную клетку. Нейроглия активно участвует в функционировании нейрона: при его длительном возбуждении высокое содержание белка и нуклеиновых кислот в нем поддерживается за счет клеток глии, в которых содержание этих веществ соответственно уменьшается. Нейроглиальные клетки весьма мобильны: они могут перемещаться в направлении наиболее активных нейронов. Таким образом, в случае необходимости, компенсируется доставка питательных веществ и кислорода к актив-но «работающим» нейронам.



Клетки нейроглии являются своеобразной гидродинамической подушкой, предохраняющей чувствительные и нежные образования нейронов от различных физических воздействий.

Система «нейрон – нейроглия» постоянно находится в состоянии гибкого ритмически колеблющегося равновесия. Нейроны, пользуясь своим положением, тянут из нейроглии все, что ей нужно.

Глиальные клетки (глиоциты) бывают нескольких типов. Три типа клеток – олигодендроциты, астроциты и эпендимные клетки – относятся к нейроглиальным клеткам, то есть имеют общее происхождение с нейронами, но, в отличие от них, способны к регенерации. Клетки микроглии являются макрофагами, мигрировавшими из кровотока в ткани мозга.

Олигодендроциты образуют отростки, которые покрывают и изолируют нервные клетки и волокна. Олигодендроциты заключают их в складки своей наружной мембраны (защитная функция от механических повреждений). При этом мембрана отростков олигодендроцитов как бы накручивается вокруг соответствующего фрагмента каждого аксона. В результате эти клетки покрывают своей цитоплазматической мембраной ствол аксона в несколько слоёв с небольшими межклеточными промежутками между ними (перехваты Ранвье). Образовавшийся многослойный мембранный комплекс называется миелиновой оболочкой. Миелин образован мембранными белками и липидами, которые обусловливают белый цвет участков нервной ткани (белое вещество мозга).

В периферической нервной системе миелинизацию осуществляют шванновские глиальные клет-ки. Шванновские клетки, в отличие от олигодендроцитов ЦНС, отростков не образуют; каждая из них как бы обвёртывает собой участок аксона, образуя вместе с другими шванновскими клетками его мие-линовую оболочку. Между соседними шванновскими клетками остаются перехваты Ранвье.



Астроциты (лат. «astra» – звезда) имеют звёздчатую форму и образуют основу (матрицу), на ко-торой располагаются нейроны (опорная функция). Эти клетки обеспечивают транспорт питательных веществ из кровеносных капилляров к нервным клеткам (трофическая функция) и одновременно участ-вуют в формировании гематоэнцефалического барьера, препятствующего поступлению из крови вред-ных веществ (защитная и барьерная функции).

Эпендимные клетки образуют непрерывную выстилку стенок желудочков мозга и центрального канала спинного мозга. Эпендимные клетки выполняют транспортную и секреторную функцию, принимая участие в образовании спинномозговой жидкости.

Микроглия представлена мелкими клетками с множеством отростков. Клетки микроглии выпол-няют в ЦНС фагоцитарную функцию, удаляя погибшие нервные и глиальные клетки, вирусы и бакте-рии (защитная функция). Выполняет роль барьера между веществом мозга и омывающей его спинно-мозговой жидкостью; регулирует секрецию и состав спинномозговой жидкости (барьерная функция).

Глиальные клетки «пульсируют» так же как нейроны, но с большей частотой – это способствует аксоплазматическому току жидкости в нейроне (двигательная функция).

И защищает их. Являются вспомогательными клетками системы, но активно участвует в ее деятельности.

К функциям нейроглии относится защита нейронов и их капилляров, секреторная деятельность, участие в метаболизме и клеточном питании. По сути дела, нейроглия является средой, которая формирует условия для работы нейронов.

Виды и подвиды, функции глиальных клеток

Глии имеют следующие типы:

  1. Макроглию или глиоциты.
  2. Микроглию или глиальные макрофаги.

Глиоциты

К глиоцитам относятся:

  • эпендимоциты;
  • астроциты;

Эпендимоциты образуют защитный слой клеток, прежде всего, в канале , а также . Эти элементы органической субстанции образуются первыми в нервных трубках и на начальной стадии имеют функции опоры и разграничения.

Данные клетки снабжены небольшими ответвлениями в виде ресничек, которые помогают движению церебральной жидкости. По мере развития организма реснички теряются, оставаясь только на отдельных участках. На поверхности нервных волокон эпендимоциты формируют мембрану, которая отделяет ЦНС от других тканей организма.

Астроциты представляют из себя клетки с отростками, они похожи на изображение звезды. Бывают двух типов: протоплазматических и волокнистых (фиброзных).

Протоплазматические астроциты имеются исключительно в сером веществе мозговых тканей. Отростки у них короткие, но толстые, и обладают ответвлениями на концах. Имеют своей задачей разграничение и участие в обмене веществ.

Волокнистые астроциты составляют основу глии в белом веществе. Отростки у них длинные, благодаря им формируются волокна, поддерживающие мозговой аппарат. Концы этих видов астроцитов образуют пограничные мембраны. Кроме защиты нейронов, волокнистые астроциты обеспечивают метаболизм и питание клеток. Астроглия является одной из важнейших тканей, формирующих среду для функционирования головного мозга.

Самой большой группой глиоцитов являются олигодендроциты. Эта группа окружает нейроны как в центральной нервной системе, так и в периферической. Вырабатывая миелин, создает электроизолирующую оболочку.

При помощи олигодендроцитов происходит обмен воды и солей в клеточных образованиях, а также процессы разрушения и восстановления. Защитная и трофическая деятельность этих групп формирует поддержку для нейронов и доставляет им необходимое питание.

Микроглия

Микроглия представляет из себя сообщество клеток небольшого размера, с двумя-тремя отростками. На концах отростков выделяются небольшие разветвления. Клетки микроглии имеют способность к небольшим движениям по типу амёб.

В отличии от ядер клеток макроглии, которые имеют круглую или овальную формы, у микроглии они вытянутой или треугольной формы. При раздражении клетки способны втягивать отростки внутрь и округлять свою форму. В таком виде их называют зернистыми шарами.

Одним из свойств микроглии является участие в синтезе белков. Но основная функция – защита нейронов от попадания субстанций, способных нарушить деятельность нервной системы. Микроглия выполняет роль макрофагов, поглощая и разлагая все вредные вещества.

Таким образом, строение и функции нейроглии заключаются в следующем:

Нейроглия не выполняет проводящих функций и не распространяет нервный сигнал, за это отвечают нейроны.

Для измерения количества разных видов ткани в нервной системе применяют нейроглиальный коэффициент.

Нейролиальный коэффициент — это процентное соотношение нейроглии и нейронов в центральной нервной системе. Так как нейроглия формирует среду для работы нейронов, то ее клеточный материал доминирует в системе и составляет до 90% всей массы.

Патологии

Центральная нервная система, как и любая другая ткань организма, может подвергаться повреждениям. Нейроглия испытывает патологические воздействия в первую очередь. Защитные функции позволяют принять удар на себя.

Все вирусы, способные воздействовать на нервную систему, начинают деятельность с изменения глии. В результате клетки дают доброкачественные новообразования, формируют кисты в спинном и головном мозге.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра анатомии и физиологии

Реферат по дисциплине

основы нейробиологи

«Нейроглия. Классификация и функции»

Выполнила: студентка 3 курса,

биологического факультета,

Института Живых Систем

Стрельник Александра Дмитриевна

Проверил: доктор биологических наук,

профессор Беляев Николай Георгиевич

Ставрополь, 2015

План

Введение

1. Общие представления о нейроглие 4

2. Классификация клеток глии

2.1 Макроглия и ее виды

2.2 Микроглия

2.3 Другие глиальные структуры

Заключение

Список литературы

Введение

Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9/10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что нейрон выполняет в нашем организме гигантскую очень тонкую и трудную работу, для чего необходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. - это обеспечивается другими, обслуживающими клетками, т.е. клетками глии.

Клетки глии впервые были описаны в 1846 г. Р. Вирховым, который и дал им это название, подразумевая под ним вещество, склеивающее нервную ткань.

Цель данного реферата ознакомиться с имеющимися данными о нейроглие и систематизировать полученную информацию.

При составлении реферата использовалась научная литература, информация о современных исследованиях нейроглии, а также были использованы интернет-источники.

1 . Общие представления о нейроглии

Известно, что нейрон выполняет в нашем организме гигантскую очень тонкую и трудную работу, для чего необходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. Выполнение этих задач обеспечивается другими, обслуживающими клетками, т.е. клетками глии. Совокупность таких клеток называется нейроглией.

Нейроглия - это обширная разнородная группа клеток нервной ткани, обеспечивающая деятельность нейронов и выполняющая опорную, трофическую, разграничительную, барьерную, защитную и секреторную функции. Без нейроглии нейроны не могут существовать и функционировать.

На протяжении всей жизни человека клетки глии взаимодействуют с нейронами во всех отделах нервной системы. Взаимоотношения между ними складываются с раннего эмбриогенеза нервной ткани. На первом этапе развития глиальные клетки вытягивают свои отростки перпендикулярно к плоскости зоны размножения и поэтому называются радиальными глиальными клетками. Нейрон обхватывает своим телом отросток глиальной клетки и медленно, как бы взбирается по нему, все более удаляясь от места своего первоначального возникновения к месту окончательного расположения. глия клетка астроцит

Происхождение термина нейроглия (от греч. neuron - нерв и glia - клей) связанно с первоначальным представлением о наличии некоего вещества, заполняющего пространство между нейронами и нервными волокнами и связывающего их воедино наподобие клея. Нейроглия была открыта в 1846 году немецким ученым Р. Вирховым. Он назвал ее промежуточным веществом, содержащим веретенообразные и звездчатые клетки, трудно отличимые от мелких нейронов. Он же впервые увидел, что нейроглия отделяет нервную ткань от кровеносного русла.

Глиальные клетки по размерам в 3-4 раза меньше, чем нейроны. В мозге человека содержание глиоцитов в 5-10 раз превышает число нейронов, причем все клетки занимают около половины объема мозга. Соотношение между числом глиоцитов и нейронов у человека выше, чем у животных. Это означает, что в ходе эволюции количество глиальных клеток в нервной системе увеличилось более значительно, чем число нейронов.

В отличие от нейронов, глиоциты взрослого человека способны к делению. В поврежденных участках мозга они размножаются, заполняя дефекты и образуя глиальный рубец. С возрастом у человека число нейронов в мозге уменьшается, а число глиальных клеток увеличивается.

От периода эмбрионального развития и до глубокой старости нейроны и глия ведут весьма оживлённый диалог. Глия влияет на образование синапсов и помогает мозгу определять, какие нервные связи усиливаются или ослабевают с течением времени (эти изменения напрямую связаны с процессами общения и долгосрочной памяти). Последние исследования показали, что глиальные клетки общаются и друг с другом, влияя на деятельность мозга в целом. Нейробиологи с большой осторожностью наделяют глию новыми полномочиями. Однако можно вообразить, какое волнение они испытывают при мысли о том, что большая часть нашего мозга почти не изучена и, следовательно, может ещё раскрыть множество тайн.

2 . Классификация клеток глии

Нейроглию подразделяют на макроглию, микроглию. Кроме того, к глиальным структурам, находящимся в составе периферической нервной системе, относят клетки-сателлиты, или мантийные клетки, расположенные в спинальных, черепно-мозговых и вегетативных ганглиях, а также леммоциты, или шванновские клеки.

Данные типы нейроглии имеют еще более подробную классификацию, которая будет описана далее.

2 .1 Макроглия и ее виды

Макроглия в эмбриональном периоде, подобно нейронам, развивается из эктодермы. Макроглия подразделяется на астроцитарную, олигодендроцитарную и эпиндимоцитарную глию. Основу этих видов макроглии составляют, соответственно, астроциты, олигодендроциты и эпиндимоциты.

Астроциты - это многоотростчатые (звездчатые), самые крупные формы глиоцитов. На их долю приходится около 40% от всех глиоцитов. Они встречаются во всех отделах центральной нервной системы, но их количество различно: в коре больших полушарий их содержится 61,5%, в мозолистом теле - 54%, в стволе мозга - 33%.

Астроциты делятся на две подгруппы - протоплазматические и волокнистые, или фиброзные. Протоплазматические астроциты встречаются преимущественно в сером веществе центральной нервной системы. Для них характерны многочисленные ответвления коротких, толстых отростков. Волокнистые астроциты располагаются в основном в белом веществе центральной нервной системы. От них отходят длинные, тонкие, незначительно ветвящиеся отростки.

Астроциты выполняют четыре основные функции -

· Опорную (поддерживают нейроны. Эту функцию позволяет выполнять наличие плотных пучков микротрубочек в их цитоплазме);

· Разграничительную (транспортную и барьерную) (разделяют нейроны своими телами на группы (компартменты);

· Метаболическую (регуляторную) - регулирование состава межклеточной жидкости, запас питательных веществ (гликоген). Астроциты также обеспечивают перемещение веществ от стенки капилляра до плазматической мембраны нейронов;

· Защитную (имунную и репаративную) при повреждении нервной ткани, например, при инсульте, астроциты могут преобразовываться в нейрон.

Кроме того, астроциты выполняют функцию участия в росте нервной ткани: астроциты способны выделять вещества, распределение которых задает направление роста нейронов в период эмбрионального развития.

Также астроциты регулируют синаптическую передачу сигнала. Аксон передаёт нервный сигнал на постсинаптическую мембрану за счёт выброса нейротрансмиттера. Кроме того, аксон высвобождает АТФ. Эти соединения вызывают перемещение кальция внутрь астроцитов, что побуждает их вступить в общение друг с другом за счёт высвобождения собственного АТФ.

Олигодендроциты - это обширная группа разнообразных нервных клеток с короткими немногочисленными отростками. Олигодендроцитов в коре больших полушарий содержится 29%, в мозолистом теле - 40%, в стволе головного мозга - 62%. Они встречаются в белом и сером веществе центральной нервной системы. Белое вещество является местом преимущественной локализации. Там они располагаются рядами, в плотную к проходящим здесь нервным волокнам. В сером веществе они располагаются вдоль миелинизированных нервных волокон и вокруг тел нейронов, образуя с ними тесный контакт. Таким образом, олигодендроциты окружают тела нейронов, а также водят в состав нервных волокон и нервных окончаний. В целом, олигодендроциты изолируют эти образования от соседних структур и тем самым способствуют проведению возбуждения.

Их подразделяют на крупные (светлые), мелкие (темные) и промежуточные (по величине и плотности). Оказалось, что это разные стадии развития олигодендроцитов.

Неделящиеся светлые олигодендроциты образуются в результате митотического деления олигодендробластов. Через несколько недель они превращаются в промежуточные и затем еще через некоторое время - в темные. Поэтому у взрослого организма встречаются, в основном, лишь темные олигодендроциты. Объем темного олигодендроцита составляет лишь 1/4 светлого. После окончания роста организма митотическое деление олигодендробластов резко замедляется, но не прекращается полностью. Следовательно, популяция олигодендроцитов может, хотя и медленно, обновляться и у взрослого.

Олигодендроциты выполняют 2 основные функции:

· Образование миелина как компонента изолирующей оболочки у нервных волокон в центральной нервной системе, что обеспечивает сальтоторное перемещение нервного импульса по волокну;

· Трофическую, включающую участие в регуляции метаболизма нейронов.

Эпиндимоциты образуют эпиндимную глию, или эпендиму. Эпендима - это однослойная выстилка полостей желудочков мозга и центрального канала спинного мозга, состоящая из эпендимоцитов, которые представляют собой эпителиоподобные клетки кубической или цилиндрической формы. Эпендимоциты выполняют в центральной нервной системе опорную, разграничительную и секреторную функции. Тела эпендимоцитов вытянуты, на свободном конце -- реснички (теряемые во многих отделах мозга после рождения особи). Биение ресничек способствует циркуляции спинномозговой жидкости. Между соседними клетками имеются щелевидные соединения и пояски сплетения, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между ними в нервную ткань.

В латеральных частях дна третьего желудочка головного мозга находятся эпендимоциты особого строения, которые называются танициты. На их апикальной части отсутствуют реснички и микроворсинки, а на конце, обращенном в сторону мозгового вещества находится ветвящийся отросток, который примыкает к нейронам и кровеносным сосудам. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза.

Некоторые эпендимоциты выполняют секреторную функцию, участвуя в образовании и регуляции состава цереброспинальной жидкости. Хороидные эпендимоциты (т.е. эпендимоциты выстилающие поверхность сосудистых сплетений) содержат большое количество митохондрий, умеренно развитый синтетический аппарат, многочисленные пузырьки и лизосомы.

2 .2 Микроглия

Микроглия - это совокупность мелких удлиненных звездчатых клеток с короткими немногочисленными ветвящимися отростками. Микроглиоциты располагаются вдоль капилляров в центральной нервной системе, в белом и сером веществе и являются вариантом блуждающих клеток. Количество микроглиоцитов в разных отделах головного мозга относительно невысокое: в коре больших полушарий - 9,5%, в мозолистом теле - 6%, в стволе головного мозга - 8% от всех видов глиоцитов.

Основная функция микроглии - защитная. Клетки микроглии - это специализированные макрофаги ЦНС, обладающие значительной подвижностью. Они могут активироваться и размножаться при воспалительных и дегенеративных заболеваниях нервной системы. Для выполнения фагоцитарной функции микроглиоциты утрачивают отростки и увеличиваются в размерах. Они способны фагоцитировать остатки погибших клеток. Активированные клетки микроглии ведут себя подобно макрофагам.

Таким образом, мозг, отделившись от «общей» иммунной системы гематоэнцефалическим барьером имеет собственную иммунную систему, которая представлена микрогллиоцитами, а также лимфоцитами спинномозговой жидкости. Именно эти клетки становятся активными участниками всех патологических процессов, происходящих в мозге.

Клетки микроглии играют очень важную роль в развитии поражений нервний системы при СПИДе. Они разносят (совместно с моноцитами и макрофагами) вирус иммунодифицита человека (ВИЧ) по ЦНС.

2 .3 Другие глиальные структуры

К таковым относятся клетки-сателлиты, или мантийные клетки, и леммоциты, или шванновские клетки.

Клетки-сателлиты (мантийные клетки) охватывают тела нейронов в спинальных, черепномозговых и вегетативных ганлиях. Они имеют уплощенную форму, мелкое круглое или овальное яд­ро. Обеспечивают барьерную функцию, регулируют метаболизм нейронов, захватывают нейромедиаторы.

Леммоциты (шванновские клетки) характерны переферической нервной системе. Они участвуют в образовании нервных волокон, изолируя отростки нейронов. Обладают способностью к выработке миелиновой оболочки. Они, по сути, являются аналогами олигодендроцитов ЦНС для ПНС.

Заключение

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая опор­ную, трофическую, разграничительную, барьерную, секреторную и за­щитную функции.

Нейроглию изучают и исследуют и сейчас, экспериментально находя ее новые свойства. Проводятся исследования о передаче метаболических сигналов в системе нейрон-нейроглия и освещение вопроса о возможной роли глии в обеспечении нейронов АТФ.

После ознакомления с функциями различных типов клеток глии, можно сделать вывод о том, что нормальное существование и функционирование нервных клеток без них было бы невозможно.

Список литературы

1. Бабминдра В.П. Морфология нервной системы. -Л.: ЛГУ, 1985. - с. 160

2. Борисова И.И. Мозг и нервная система человека: Иллюстрированный справочник. - М.: Фор-ум, 2009. - с. 112

3. Каменский М.А., Каменская А.А. Основы нейробиологии: учебник для студентов вузов. - М.: Дрофа, 2014. - с. 324

4. Николлс Дж.Г., Мартин А.Р., Валлас Б.Дж., Фукс П.А. От нейрона к мозгу. - М.: Едиториал УРСС, 2003. - с. 672

5. Прищепа И.М., Ефременко И.И. Нейрофизиология. - Минск: Вышэйшая школа, 2013. - с.288

6. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. - М.: Аспект Пресс, 2000. - с. 277

Интернет - ресурсы

1. http://www.braintools.ru/tag/glia - вырезки из статей и книг по разделу «глия»

2. http://scisne.net/a-1101 - Дуглас Филдз исследование функций нейроглии

Размещено на Allbest.ru

Подобные документы

    Понятие и функции стволовых клеток, их типы в зависимости от способов получения, потенциал. Характеристики эмбриональных стволовых клеток. Дифференцировки стволовых клеток костного мозга. Органы и ткани, которые ученые смогли вырастить с их помощью.

    презентация , добавлен 04.11.2013

    Возникновение мышечных тканей, их функция и происхождение, подразделение по строению сократительных фибрилл. Характеристика эпендимоцитов, астроцитов и неронов. Основные функции нервных клеток. Рецепторы, синапсы и эффекторные нервные окончания.

    реферат , добавлен 18.01.2010

    Роль тучных клеток в регуляции гомеостаза организма. Локализация тучных клеток, их медиаторы. Секреция медиаторов и их функции. Основные типы тучных клеток. Рецепторы и лиганды, эффекты медиаторов. Участие тучных клеток в патологических процессах.

    презентация , добавлен 16.01.2014

    Основное свойство стволовых клеток - дифференциация в другие типы клеток. Виды стволовых клеток. Рекрутирование (мобилизация) стволовых клеток, их пролиферация. Болезни стволовых клеток, их иммунология и генетика. Генная терапия и стволовые клетки.

    курсовая работа , добавлен 20.12.2010

    Понятие, классификация и применение стволовых клеток. Эмбриональные, фетальные и постнатальные клетки. Клиническое применение стволовых клеток для лечения инфаркта. Опыт применения биологического материала в неврологии и нейрохирургии, эндокринологии.

    реферат , добавлен 29.05.2013

    Канцерогенез: определение и основные стадии опухолевой трансформации клеток, классификация и характеристика провоцирующих факторов. Вирусный онкогенез, клинические признаки. Биологические особенности и свойства злокачественных опухолевых клеток.

    презентация , добавлен 24.10.2013

    Определение иммунитета, его типы и виды. Общая схема иммунного ответа. Маркеры и рецепторы клеток иммунной системы. Распределение T-клеток в организме. Особенности структуры имунноглобулина, его классы и типы. Общая характеристика энергетических реакций.

    реферат , добавлен 19.10.2011

    Опухоли – группа генных болезней с неконтролируемой пролиферацией клеток, их классификация. Механизм действия радиационного канцерогенеза. Действие радиации на ДНК. Основные химические канцерогены. Защитные механизмы опухолевых клеток, их метаболизм.

    презентация , добавлен 17.06.2014

    Понятие иммунитета у беспозвоночных, классификация клеток крови, индуцибельные гуморальные защитные факторы. Эволюция В-клеток и иммуноглобулинов, клетки системы врожденного иммунитета, антимикробные пептиды. Лимфомиелоидные ткани у низших позвоночных

    реферат , добавлен 27.09.2009

    Особенности современных представлений о крови - внутренней среде организма с определенным морфологическим составом и многообразными функциями, которую условно делят на две части: клетки (эритроциты, лейкоциты, тромбоциты) и плазму. Функции клеток крови.