Почему вода не горит, хотя состоит из горючих веществ (водорода и кислорода). Водород. Физические и химические свойства, получение Химические свойства и получение простых веществ

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?

Цель занятия. На этом занятии вы узнаете о, пожалуй, самых важных химических элементах для жизни на земле – водороде и кислороде, узнаете об их химических свойствах, а также о физических свойствах простых веществ, ими образуемых, узнаете больше о роли кислорода и водорода в природе и жизни человека.

Водород – самый распространённый элемент во Вселенной. Кислород – самый распространённый элемент на Земле. Вместе они образуют воду – вещество, которое составляет больше половины массы человеческого тела. Кислород – газ, необходимый нам для дыхания, а без воды мы не смогли бы прожить и нескольких дней, так что без сомнения можно считать кислород и водород важнейшими химическими элементами, необходимыми для жизни.

Строение атомов водорода и кислорода

Таким образом, водород проявляет неметаллические свойства. В природе водород встречается в виде трёх изотопов, протия , дейтерия и трития , изотопы водорода очень сильно отличаются друг от друга по физическим свойствам, поэтому им даже присвоены индивидуальные символы.

Если вы не помните или не знаете, что такое изотопы, поработайте с материалами электронного образовательного ресурса «Изотопы как разновидности атомов одного химического элемента». В нём вы узнаете, чем отличаются друг от друга изотопы одного элемента, к чему приводит наличие нескольких изотопов у одного элемента, а также познакомитесь с изотопами нескольких элементов.

Таким образом, возможные степени окисления кислорода ограничены значениями от –2 до +2. Если кислород принимает два электрона (становясь анионом) или образует две ковалентные связи с менее электроотрицательными элементами, он переходит в степень окисления –2. Если кислород образует одну связь с другим атомом кислорода, а вторую – с атомом менее электроотрицательного элемента, он переходит в степень окисления –1. Образуя две ковалентные связи со фтором (единственным элементом с более высоким значением электроотрицательности), кислород переходит в степень окисления +2. Образуя одну связь с другим атомом кислорода, а вторую – с атомом фтора – +1. И наконец, если кислород образует одну связь с менее электроотрицательным атомом, а вторую – со фтором, он будет находиться в степени окисления 0.

Физические свойства водорода и кислорода, аллотропия кислорода

Водород – бесцветный газ без вкуса и запаха. Очень лёгкий (в 14,5 раз легче воздуха). Температура сжижения водорода – -252,8 °C – почти самая низкая среди всех газов (уступает только гелию). Жидкий и твёрдый водород – очень лёгкие бесцветные вещества.

Кислород – бесцветный газ без вкуса и запаха, немного тяжелее воздуха. При температуре -182,9 °C превращается в тяжёлую жидкость голубого цвета, при -218 °C затвердевает с образованием кристаллов синего цвета. Молекулы кислорода парамагнитны, то есть кислород притягивается магнитом. Кислород плохо растворим в воде.

В отличие от водорода, образующего молекулы только одного типа, , кислород проявляет аллотропию и образует молекулы двух типов, то есть элемент кислород образует два простых вещества: кислород и озон .

Химические свойства и получение простых веществ

Водород.

Связь в молекуле водорода – одинарная, однако это одна из самых прочных одинарных связей в природе, и чтобы разорвать её необходимо затратить много энергии, по этой причине водород весьма малоактивен при комнатной температуре, однако при повышении температуры (или в присутствии катализатора) водород легко взаимодействует со многими простыми и сложными веществами.

Водород с химической точки зрения является типичным неметаллом. То есть он способен взаимодействовать с активными металлами с образованием гидридов, в которых он проявляет степень окисления –1. С некоторыми металлами (литий, кальций) взаимодействие протекает даже при комнатной температуре, однако довольно медленно, поэтому при синтезе гидридов используют нагревание:

,

.

Образование гидридов прямым взаимодействием простых веществ возможно только для активных металлов. Уже алюминий не взаимодействует с водородом непосредственно, его гидрид получают обменными реакциями.

С неметаллами водород также реагирует только при нагревании. Исключениями являются галогены хлор и бром, реакция с которыми может быть индуцирована светом:

.

Реакция со фтором также не требует нагревания, она протекает со взрывом даже при сильном охлаждении и в абсолютной темноте.

Реакция с кислородом протекает по разветвлённому цепному механизму, поэтому скорость реакции стремительно возрастает, и в смеси кислорода с водородом в соотношении 1:2 реакция протекает со взрывом (такая смесь носит название «гремучий газ»):

.

Реакция с серой протекает гораздо более спокойно, практически без выделения тепла:

.

Реакции с азотом и йодом протекают обратимо:

,

.

Это обстоятельство сильно затрудняет получение аммиака в промышленности: процесс требует использования повышенного давления для смешения равновесия в сторону образования аммиака. Йодоводород прямым синтезом не получают, поскольку имеется несколько гораздо более удобных способов его синтеза.

С малоактивными неметаллами () водород непосредственно не реагирует, хотя его соединения с ними известны.

В реакциях со сложными веществами водород в большинстве случаев выступает в роли восстановителя. В растворах водород может восстанавливать малоактивные металлы (располагающиеся после водорода в ряду напряжений ) из их солей:

При нагревании водород может восстанавливать многие металлы из их оксидов. При этом чем активнее металл, тем сложнее его восстановить и тем более высокая для этого нужна температура:

.

Металлы более активные, чем цинк, практически невозможно восстановить водородом.

Водород в лаборатории получают взаимодействием металлов с сильными кислотами. Чаще всего используют цинк и соляную кислоту:

Реже используется электролиз воды в присутствии сильных электролитов:

В промышленности водород получают как побочный продукт при получении едкого натра электролизом раствора хлорида натрия:

Кроме того, водород получают при переработке нефти.

Получение водорода фотолизом воды – один из наиболее перспективных способов в будущем, однако на сегодняшний момент промышленное применение этого метода затруднительно.

Поработайте с материалами электронных образовательных ресурсов Лабораторная работа «Получение и свойства водорода» и Лабораторная работа «восстановительные свойства водорода». Изучите принцип действия аппарата Киппа и аппарата Кирюшкина. Подумайте, в каких случаях удобнее использовать аппарат Киппа, а в каких – Кирюшкина. Какие свойства проявляет водород в реакциях?

Кислород.

Связь в молекуле кислорода двойная и весьма прочная. Поэтому кислород довольно малоактивен при комнатной температуре. При нагревании он, однако, начинает проявлять сильные окислительные свойства.

Кислород без нагревания реагирует с активными металлами (щелочными, щелочноземельными и некоторыми лантаноидами):

При нагревании кислород взаимодействует с большинством металлов с образованием оксидов:

,

,

.

Серебро и менее активные металлы не окисляются кислородом.

Кислород также реагирует с большинством неметаллов с образованием оксидов:

,

,

.

Взаимодействие с азотом происходит только при очень высоких температурах, около 2000 °C.

С хлором, бромом и йодом кислород не реагирует, хотя многие их оксиды можно получить косвенным путём.

Взаимодействие кислорода со фтором можно провести при пропускании электрического разряда через смесь газов:

.

Фторид кислорода(II) – нестойкое соединение, легко разлагается и является очень сильным окислителем.

В растворах кислород является сильным, хотя и медленным, окислителем. Как правило, кислород способствует переходу металлов в более высокие степени окисления:

Присутствие кислорода часто позволяет растворять в кислотах металлы, расположенные сразу за водородом в ряду напряжений :

При нагревании кислород может окислять низшие оксиды металлов:

.

Кислород в промышленности не получают химическими способами, его получают из воздуха перегонкой.

В лаборатории используют реакции разложения богатых кислородом соединений – нитратов, хлоратов, перманганатов при нагревании:

Также можно получить кислород при каталитическом разложении перекиси водорода:

Кроме того, для получения кислорода может использоваться приведённая выше реакция электролиза воды.

Поработайте с материалами электронного образовательного ресурса Лабораторная работа «Получение кислорода и его свойства».

Как называется используемый в лабораторной работе метод собирания кислорода? Какие ещё способы собирания газов существуют и какие из них подходят для собирания кислорода?

Задание 1. Посмотрите видеофрагмент «Разложение перманганата калия при нагревании».

Ответьте на вопросы:

    1. Какой из твёрдых продуктов реакции растворим в воде?
    2. Какой цвет имеет раствор перманганата калия?
    3. Какой цвет имеет раствор манганата калия?

Напишите уравнения протекающих реакций. Уравняйте их, используя метод электронного баланса.

Обсудите выполнение задания с учителем на или в видеокомнате.

Озон.

Молекула озона трёхатомна и связи в ней менее прочные, чем в молекуле кислорода, что приводит к большей химической активности озона: озон легко окисляет многие вещества в растворах или в сухом виде без нагревания:

Озон способен легко окислить оксид азота(IV) до оксида азота(V), а оксид серы(IV) до оксида серы(VI) без катализатора:

Озон постепенно разлагается с образованием кислорода:

Для получения озона используются специальные приборы – озонаторы, в которых через кислород пропускают тлеющий разряд.

В лаборатории для получения незначительных количеств озона иногда используют реакции разложения пероксосоединений и некоторых высших оксидов при нагревании:

Поработайте с материалами электронного образовательного ресурса Лабораторная работа «Получение озона и исследование его свойств».

Объясните, почему обесцвечивается раствор индиго. Напишите уравнения реакций, протекающих при смешении растворов нитрата свинца и сульфида натрия и при пропускании через полученную взвесь озонированного воздуха. Для реакции ионного обмена составьте ионные уравнения. Для окислительно-восстановительной реакции составьте электронный баланс.

Обсудите выполнение задания с учителем на или в видеокомнате.

Химические свойства воды

Для лучшего ознакомления с физическими свойствами воды и её значимостью поработайте с материалами электронных образовательных ресурсов «Аномальные свойства воды» и «Вода – важнейшая жидкость на Земле».

Вода обладает огромной важностью для любых живых организмов – по сути многие живые организмы состоят из воды более чем наполовину. Вода является одним из наиболее универсальных растворителей (при высоких температурах и давлениях её возможности как растворителя существенно возрастают). С химической точки зрения вода является оксидом водорода, при этом в водном растворе она диссоциирует (хотя и в очень малой степени) на катионы водорода и гидроксид-анионы:

.

Вода взаимодействует со многими металлами. С активными (щелочными, щелочноземельными и некоторыми лантаноидами) вода реагирует без нагревания:

С менее активными взаимодействие происходит при нагревании.

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

10.1.Водород

Название "водород"относится и к химическому элементу, и к простому веществу. Элемент водород состоит из атомов водорода. Простое вещество водород состоит из молекул водорода.

а) Химический элемент водород

В естественном ряду элементов порядковый номер водорода – 1. В системе элементов водород находится в первом периоде в IA или VIIA группе.

Водород – один из самых распространенных элементов на Земле. Молярная доля атомов водорода в атмосфере, гидросфере и литосфере Земли (все вместе это называется земной корой) равна 0,17. Он входит в состав воды, многих минералов, нефти, природного газа, растений и животных. В теле человека в среднем содержится около 7 килограммов водорода.

Существуют три изотопа водорода:
а) легкий водород – протий ,
б) тяжелый водород – дейтерий (D),
в) сверхтяжелый водород – тритий (Т).

Тритий неустойчивый (радиоактивный) изотоп, поэтому в природе он практически не встречается. Дейтерий устойчив, но его очень мало: w D = 0,015% (от массы всего земного водорода). Поэтому атомная масса водорода очень мало отличается от 1 Дн (1,00794 Дн).

б) Атом водорода

Из предыдущих разделов курса химии вам уже известны следующие характеристики атома водорода:

Валентные возможности атома водорода определяются наличием одного электрона на единственной валентной орбитали. Большая энергия ионизации делает атом водорода не склонным к отдаче электрона, а не слишком высокая энергия сродства к электрону приводит к незначительной склонности его принимать. Следовательно, в химических системах образование катиона Н невозможно, а соединения с анионом Н не очень устойчивы. Таким образом, для атома водорода наиболее характерно образование с другими атомами ковалентной связи за счет своего одного неспаренного электрона. И в случае образования аниона, и в случае образования ковалентной связи атом водорода одновалентен.
В простом веществе степень окисления атомов водорода равна нулю, в большинстве соединений водород проявляет степень окисления +I, и только в гидридах наименее электроотрицательных элементов у водорода степень окисления –I.
Сведения о валентных возможностях атома водорода приведены в таблице 28. Валентное состояние атома водорода, связанного одной ковалентной связью с каким-либо атомом, в таблице обозначено символом "H-".

Таблица 28. Валентные возможности атома водорода

Валентное состояние

Примеры химических веществ

I
0
–I

HCl, H 2 O, H 2 S, NH 3 , CH 4 , C 2 H 6 , NH 4 Cl, H 2 SO 4 , NaHCO 3 , KOH
H 2
B 2 H 6 , SiH 4 , GeH 4

NaH, KH, CaH 2 , BaH 2

в) Молекула водорода

Двухатомная молекула водорода Н 2 образуется при связывании атомов водорода единственной возможной для них ковалентной связью. Связь образуется по обменному механизму. По способу перекрывания электронных облаков это s-связь (рис. 10.1 а ). Так как атомы одинаковы, связь неполярная.

Межатомное расстояние (точнее равновесное межатомное расстояние, ведь атомы-то колеблются) в молекуле водорода r (H–H) = 0,74 A (рис.10.1 в ), что значительно меньше суммы орбитальных радиусов (1,06 A). Следовательно, электронные облака связываемых атомов перекрываются глубоко (рис. 10.1 б ), и связь в молекуле водорода прочная. Об этом же говорит и довольно большое значение энергии связи (454 кДж/моль).
Если охарактеризовать форму молекулы граничной поверхностью (аналогичной граничной поверхности электронного облака), то можно сказать, что молекула водорода имеет форму слегка деформированного (вытянутого) шара (рис. 10.1 г ).

г) Водород (вещество)

При обычных условиях водород – газ без цвета и запаха. В небольших количествах он нетоксичен. Твердый водород плавится при 14 К (–259 °С), а жидкий водород кипит при 20 К (–253 °С). Низкие температуры плавления и кипения, очень маленький температурный интервал существования жидкого водорода (всего 6 °С), а также небольшие значения молярных теплот плавления (0,117 кДж/моль) и парообразования (0,903 кДж/моль) говорят о том, что межмолекулярные связи в водороде очень слабые.
Плотность водорода r(Н 2) = (2 г/моль):(22,4 л/моль) = 0,0893 г/л. Для сравнения: средняя плотность воздуха равна 1,29 г/л. То есть водород в 14,5 раза "легче"воздуха. В воде он практически нерастворим.
При комнатной температуре водород малоактивен, но при нагревании реагирует со многими веществами. В этих реакциях атомы водорода могут как повышать, так и понижать свою степень окисления: Н 2 + 2е – = 2Н –I , Н 2 – 2е – = 2Н +I .
В первом случае водород является окислителем, например, в реакциях с натрием или с кальцием: 2Na + H 2 = 2NaH, (t ) Ca + H 2 = CaH 2 . (t )
Но более характерны для водорода восстановительные свойства: O 2 + 2H 2 = 2H 2 O, (t )
CuO + H 2 = Cu + H 2 O. (t )
При нагревании водород окисляется не только кислородом, но и некоторыми другими неметаллами, например, фтором, хлором, серой и даже азотом.
В лаборатории водород получают в результате реакции

Zn + H 2 SO 4 = ZnSO 4 + H 2 .

Вместо цинка можно использовать железо, алюминий и некоторые другие металлы, а вместо серной кислоты – некоторые другие разбавленные кислоты. Образующийся водород собирают в пробирку методом вытеснения воды (см. рис. 10.2 б ) или просто в перевернутую колбу (рис. 10.2 а ).

В промышленности в больших количествах водород получают из природного газа (в основном это метан) при взаимодействии его с парами воды при 800 °С в присутствии никелевого катализатора:

CH 4 + 2H 2 O = 4H 2 +CO 2 (t , Ni)

или обрабатывают при высокой температуре парами воды уголь:

2H 2 O + С = 2H 2 + CO 2 . (t )

Чистый водород получают из воды, разлагая ее электрическим током (подвергая электролизу):

2H 2 O = 2H 2 + O 2 (электролиз).

д) Соединения водорода

Гидриды (бинарные соединения, содержащие водород) делятся на два основных типа:
а) летучие (молекулярные) гидриды,
б) солеобразные (ионные) гидриды.
Элементы IVА – VIIA групп и бор образуют молекулярные гидриды. Из них устойчивы только гидриды элементов, образующих неметаллы:

B 2 H 6 ;CH 4 ; NH 3 ; H 2 O; HF
SiH 4 ;PH 3 ; H 2 S; HCl
AsH 3 ; H 2 Se; HBr
H 2 Te; HI
За исключением воды, все эти соединения при комнатной температуре – газообразные вещества, отсюда их название – "летучие гидриды" .
Некоторые из элементов, образующих неметаллы, входят в состав и более сложных гидридов. Например, углерод образует соединения с общими формулами C n H 2n +2 , C n H 2n , C n H 2n –2 и другие, где n может быть очень велико (эти соединения изучает органическая химия).
К ионным гидридам относятся гидриды щелочных, щелочноземельных элементов и магния. Кристаллы этих гидридов состоят из анионов Н и катионов металла в высшей степени окисления Ме или Ме 2 (в зависимости от группы системы элементов).

LiH
NaH MgH 2
KH CaH 2
RbH SrH 2
CsH BaH 2

И ионные, и почти все молекулярные гидриды (кроме Н 2 О и НF) являются восстановителями, но ионные гидриды проявляют восстановительные свойства значительно сильнее, чем молекулярные.
Кроме гидридов, водород входит в состав гидроксидов и некоторых солей. Со свойствами этих, более сложных, соединений водорода вы познакомитесь в следующих главах.
Главными потребителями получаемого в промышленности водорода являются заводы по производству аммиака и азотных удобрений, где аммиак получают непосредственно из азота и водорода:

N 2 +3H 2 2NH 3 (Р , t , Pt – катализатор).

В больших количествах водород используют для получения метилового спирта (метанола) по реакции 2Н 2 + СО = СН 3 ОН (t , ZnO – катализатор), а также в производстве хлороводорода, который получают непосредственно из хлора и водорода:

H 2 + Cl 2 = 2HCl.

Иногда водород используют в металлургии в качестве восстановителя при получении чистых металлов, например: Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.

1.Из каких частиц состоят ядра а) протия, б) дейтерия, в) трития?
2.Сравните энергию ионизации атома водорода с энергией ионизации атомов других элементов. К какому элементу по этой характеристике водород ближе всего?
3.Проделайте то же для энергии сродства к электрону
4.Сравните направление поляризации ковалентной связи и степень окисления водорода в соединениях: а) BeH 2 ,CH 4 , NH 3 , H 2 O, HF; б) CH 4 , SiH 4 ,GeH 4 .
5.Запишите простейшую, молекулярную, структурную и пространственную формулу водорода. Какая из них чаще всего используется?
6.Часто говорят: " Водород легче воздуха". Что под этим подразумевается? В каких случаях это выражение можно понимать буквально, а в каких –нет?
7.Составьте структурные формулы гидридов калия и кальция, а также аммиака, сероводорода и бромоводорода.
8.Зная молярные теплоты плавления и парообразования водорода, определите значения соответствующих удельных величин.
9.Для каждой из четырех реакций, иллюстрирующих основные химические свойства водорода, составьте электронный баланс. Отметьте окислители и восстановители.
10.Определите массу цинка, необходимого для получения 4,48 л водорода лабораторным способом.
11.Определите массу и объем водорода, который можно получить из 30 м 3 смеси метана и паров воды, взятых в объемном отношении 1:2, при выходе 80 %.
12.Составьте уравнения реакций, протекающихпри взаимодействии водорода а) со фтором, б) с серой.
13.Приведенные ниже схемы реакций иллюстрируют основные химические свойства ионных гидридов:

а) MH + O 2 MOH (t ); б) MH + Cl 2 MCl + HCl (t );
в) MH + H 2 O MOH + H 2 ; г) MH + HCl(p) MCl + H 2
Здесь М – это литий, натрий, калий, рубидий или цезий. Составьте уравнения соответствующих реакций в случае, если М – натрий. Проиллюстрируйте уравнениями реакций химические свойства гидрида кальция.
14.Используя метод электронного баланса, составьте уравнения следующих реакций, иллюстрирующих восстановительные свойства некоторых молекулярных гидридов:
а) HI + Cl 2 HCl + I 2 (t ); б) NH 3 + O 2 H 2 O + N 2 (t ); в) CH 4 + O 2 H 2 O + CO 2 (t ).

10.2 Кислород

Как и в случае водорода, слово "кислород" является названием и химического элемента, и простого вещества. Кроме простого вещества "кислород" (дикислород) химический элемент кислородобразует еще одно простое вещество, называемое " озон" (трикислород). Это аллотропные модификации кислорода. Вещество кислород состоит из молекул кислорода O 2 , а вещество озон состоит из молекул озона O 3 .

а) Химический элемент кислород

В естественном ряду элементов порядковый номер кислорода – 8. В системе элементов кислород находится во втором периоде в VIA группе.
Кислород – самый распространенный элемент на Земле. В земной коре каждый второй атом – атом кислорода, то есть молярная доля кислорода в атмосфере, гидросфере и литосфереЗемли – около 50 %. Кислород (вещество) – составная часть воздуха. Объемная доля кислорода в воздухе –21 %. Кислород (элемент) входит в состав воды, многих минералов, а также растений и животных. В теле человека содержится в среднем 43 кг кислорода.
Природный кислород состоит из трех изотопов (16 О, 17 О и 18 О), из которых наиболее распространен самый легкий изотоп 16 О. Поэтому атомная масса кислорода близка к 16 Дн (15,9994 Дн).

б) Атом кислорода

Вам известны следующие характеристики атома кислорода.

Таблица 29. Валентные возможности атома кислорода

Валентное состояние

Примеры химических веществ

Al 2 O 3 , Fe 2 O 3 , Cr 2 O 3 *

–II
–I
0
+I
+II

H 2 O, SO 2 , SO 3 , CO 2 , SiO 2 , H 2 SO 4 , HNO 2 , HClO 4 , COCl 2 , H 2 O 2
O 2 **
O 2 F 2
OF 2

NaOH, KOH, Ca(OH) 2 , Ba(OH) 2
Na 2 O 2 , K 2 O 2 , CaO 2 , BaO 2

Li 2 O, Na 2 O, MgO, CaO, BaO, FeO, La 2 O 3

* Эти оксиды можно рассматривать и как ионные соединения.
** Атомы кислорода в молекуле не находятся в данном валентном состоянии; это лишь пример вещества со степенью окисления атомов кислорода, равной нулю
Большая энергия ионизации (как у водорода) исключает образование из атома кислорода простого катиона. Энергия сродства к электрону довольно велика (почти в два раза больше, чем у водорода), что обеспечивает большую склонность атома кислорода к присоединению электронов и способность образовывать анионы О 2A . Но энергия сродства к электрону у атома кислорода все же меньше, чем у атомов галогенов и даже других элементов VIA группы. Поэтому анионы кислорода (оксид-ионы ) существуют только в соединениях кислорода с элементами, атомы которых очень легко отдают электроны.
Обобществляя два неспаренных электрона, атом кислорода может образовать две ковалентные связи. Две неподеленные пары электронов из-за невозможности возбуждения могут вступать только в донорно-акцепторное взаимодействие. Таким образом, без учета кратности связи и гибридизации атом кислорода может находиться в одном из пяти валентных состояний (табл. 29).
Наиболее характерно для атома кислорода валентное состояние с W к = 2, то есть образование двух ковалентных связей за счет двух неспаренных электронов.
Очень высокая электроотрицательность атома кислорода (выше – только у фтора) приводит к тому, что в большинстве своих соединений кислород имеет степень окисления –II. Существуют вещества, в которых кислород проявляет и другие значения степени окисления, некоторые из них приведены в таблице 29 в качестве примеров, а сравнительная устойчивость показана на рис. 10.3.

в) Молекула кислорода

Экспериментально установлено, что двухатомная молекула кислорода О 2 содержит два неспаренных электрона. Используя метод валентных связей, такое электронное строение этой молекулы объяснить невозможно. Тем не менее, связь в молекуле кислорода близка по свойствам к ковалентной. Молекула кислорода неполярна. Межатомное расстояние (r o–o = 1,21 A = 121 нм) меньше, чем расстояние между атомами, связанными простой связью. Молярная энергия связи довольно велика и составляет 498 кДж/моль.

г) Кислород (вещество)

При обычных условиях кислород – газ без цвета и запаха. Твердый кислород плавится при 55 К (–218 °С), а жидкий кислород кипит при 90 К (–183 °С).
Межмолекулярные связи в твердом и жидком кислороде несколько более прочные, чем в водороде, о чем свидетельствует больший температурный интервал существования жидкого кислорода (36 °С) и большие, чем у водорода, молярные теплоты плавления (0,446 кДж/моль) и парообразования (6,83 кДж/моль).
Кислород незначительно растворим в воде: при 0 °С в 100 объемах воды (жидкой!) растворяется всего 5 объемов кислорода (газа!).
Высокая склонность атомов кислорода к присоединению электронов и высокая электроотрицательность приводят к тому, что кислород проявляет только окислительные свойства. Эти свойства особенно ярко проявляются при высокой температуре.
Кислород реагирует со многими металлами: 2Ca + O 2 = 2CaO, 3Fe + 2O 2 = Fe 3 O 4 (t );
неметаллами: C + O 2 = CO 2, P 4 + 5O 2 = P 4 O 10 ,
и сложными веществами: CH 4 + 2O 2 = CO 2 + 2H 2 O, 2H 2 S + 3O 2 = 2H 2 O + 2SO 2 .

Чаще всего в результате таких реакций получаются различные оксиды (см. гл. II § 5), но активные щелочные металлы, например натрий, сгорая, превращаются в пероксиды:

2Na + O 2 = Na 2 O 2 .

Структурная формула получившегося пероксида натрия (Na ) 2 ( O-O ).
Тлеющая лучинка, помещенная в кислород, вспыхивает. Это удобный и простой способ обнаружения чистого кислорода.
В промышленности кислород получают из воздуха путем ректификации (сложной разгонки), а в лаборатории – подвергая термическому разложению некоторые кислородсодержащие соединения, например:
2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2 (200 °С);
2KClO 3 = 2KCl + 3O 2 (150 °С, MnO 2 – катализатор);
2KNO 3 = 2KNO 2 + 3O 2 (400 °С)
и, кроме того, путем каталитического разложения пероксида водорода при комнатной температуре: 2H 2 O 2 = 2H 2 O + O 2­ (MnO 2 –катализатор).
Чистый кислород используют в промышленности для интенсификации тех процессов, в которых происходит окисление, и для создания высокотемпературного пламени. В ракетной технике в качестве окислителя используется жидкий кислород.
Огромное значение имеет кислород для поддержания жизнедеятельности растений, животных и человека. В обычных условиях человеку достаточно для дыхания кислорода воздуха. Но в условиях, когда воздуха не хватает, или он вообще отсутствует (в самолетах, при водолазных работах, в космических кораблях и т. п.), для дыхания готовят специальные газовые смеси, содержащие кислород. Применяют кислород и в медицине при заболеваниях, вызывающих затруднение дыхания.

д) Озон и его молекулы

Озон O 3 – вторая аллотропная модификация кислорода.
Трехатомная молекула озона имеет уголковую структуру, среднюю между двумя структурами, отображаемыми следующими формулами:

Озон – темно-синий газ с резким запахом. Из-за своей сильной окислительной активности он ядовит. Озон в полтора раза "тяжелее" кислорода и несколько больше, чем кислород, растворим в воде.
Озон образуется в атмосфере из кислорода при грозовых электрических разрядах:

3О 2 = 2О 3 ().

При обычной температуре озон медленно превращается в кислород, а при нагревании этот процесс протекает со взрывом.
Озон содержится в так называемом "озоновом слое" земной атмосферы, предохраняя все живое на Земле от вредного воздействия солнечного излучения.
В некоторых городах озон используется вместо хлора для дезинфекции (обеззараживания) питьевой воды.

Изобразите структурные формулы следующих веществ: OF 2 , H 2 O, H 2 O 2 , H 3 PO 4 , (H 3 O) 2 SO 4 , BaO, BaO 2 , Ba(OH) 2 . Назовите эти вещества. Опишите валентные состояния атомов кислорода в этих соединениях.
Определите валентность и степень окисления каждого из атомов кислорода.
2.Составьте уравнения реакций сгорания в кислороде лития, магния, алюминия, кремния, красного фосфора и селена (атомы селена окисляются до степени окисления +IV, атомы остальных элементов – до высшей степени окисления). К каким классам оксидов относятся продукты этих реакций?
3.Сколько литров озона можно получить (при нормальных условиях) а) из 9 л кислорода, б) из 8 г кислорода?

Вода – самое распространенное в земной коре вещество. Масса земной воды оценивается в 10 18 тонн. Вода – основа гидросферы нашей планеты, кроме того, она содержится в атмосфере, в виде льда образует полярные шапки Земли и высокогорные ледники, а также входит в состав различных горных пород. Массовая доля воды в человеческом организме составляет около 70 %.
Вода – единственное вещество, у которого во всех трех агрегатных состояниях есть свои особые названия.

Электронное строение молекулы воды (рис. 10.4 а ) нами было подробно изучено ранее (см. § 7.10).
Из-за полярности связей О–Н и уголковой формы молекула воды представляет собой электрический диполь .

Для характеристики полярности электрического диполя используется физическая величина, называемая "электрический момент электрического диполя" или просто "дипольный момент" .

В химии дипольный момент измеряют в дебаях: 1 Д = 3,34 . 10 –30 Кл. м

В молекуле воды – две полярные ковалентные связи, то есть два электрических диполя, каждый из которых обладает своим дипольным моментом (и ). Общий дипольный момент молекулы равен векторной сумме этих двух моментов (рис. 10.5):

(Н 2 О) = ,

где q 1 и q 2 – частичные заряды (+) на атомах водорода, а и – межатомные расстояния О – Н в молекуле. Так как q 1 = q 2 = q , а , то

Экспериментально определенные дипольные моменты молекулы воды и некоторых других молекул приведены в таблице.

Таблица 30. Дипольные моменты некоторых полярных молекул

Молекула

Молекула

Молекула

Учитывая дипольный характер молекулы воды, ее часто схематически изображают следующим образом:
Чистая вода – бесцветная жидкость без вкуса и запаха. Некоторые основные физические характеристики воды приведены в таблице.

Таблица 31. Некоторые физические характеристики воды

Большие значения молярных теплот плавления и парообразования (на порядок больше, чем у водорода и кислорода) свидетельствуют о том, что молекулы воды, как в твердом, так и в жидком веществе, довольно прочно связаны между собой. Эти связи называют "водородными связями" .

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ, ДИПОЛЬНЫЙ МОМЕНТ, ПОЛЯРНОСТЬ СВЯЗИ, ПОЛЯРНОСТЬ МОЛЕКУЛЫ.
Сколько валентных электронов атома кислорода принимает участие в образовании связей в молекуле воды?
2.При перекрывании каких орбиталей образуются связи между водородом и кислородом в молекуле воды?
3.Составьте схему образования связей в молекуле пероксида водорода H 2 O 2 . Что вы можете сказать о пространственном строении этой молекулы?
4.Межатомные расстояния в молекулах HF, HCl и HBr равны, соответственно, 0,92; 1,28 и 1,41. Используя таблицу дипольных моментов, рассчитайте и сравните между собой частичные заряды на атомах водорода в этих молекулах.
5.Межатомные расстояния S – H в молекуле сероводорода равны 1,34 , а угол между связями 92°. Определите значения частичных зарядов на атомах серы и водорода. Что вы можете сказать о гибридизации валентных орбиталей атома серы?

10.4. Водородная связь

Как вы уже знаете, из-за существенной разницы в электроотрицательности водорода и кислорода (2,10 и 3,50) у атома водорода в молекуле воды возникает большой положительный частичный заряд (q ч = 0,33 е ), а у атома кислорода – еще больший отрицательный частичный заряд (q ч = –0,66 е ). Вспомним также, что у атома кислорода есть две неподеленные пары электронов на sp 3 -гибридных АО. Атом водорода одной молекулы воды притягивается к атому кислорода другой молекулы, и, кроме того, полупустая 1s-АО атома водорода частично акцептирует пару электронов атома кислорода. В результате этих взаимодействий между молекулами возникает особый вид межмолекулярных связей –водородная связь.
В случае воды образование водородной связи может быть схематически представлено следующим образом:

В последней структурной формуле тремя точками (пунктирный штрих, а не электроны!) показана водородная связь.

Водородная связь существует не только между молекулами воды. Она образуется, если соблюдаются два условия:
1) в молекуле есть сильно полярная связь Н–Э (Э – символ атома достаточно электроотрицательного элемента),
2) в молекуле есть атом Э с большим отрицательным частичным зарядом и неподеленной парой электронов.
В качестве элемента Э может быть фтор, кислород и азот. Существенно слабее водородные связи, если Э – хлор или сера.
Примеры веществ с водородной связью между молекулами: фтороводород, твердый или жидкий аммиак, этиловый спирт и многие другие.

В жидком фтороводороде его молекулы связаны водородными связями в довольно длинные цепи, а в жидком и твердом аммиаке образуются трехмерные сетки.
По прочности водородная связь – промежуточная между химической связью и остальными видами межмолекулярных связей. Молярная энергия водородной связи обычно лежит в пределах от 5 до 50 кДж/моль.
В твердой воде (то есть в кристаллах льда) все атомы водорода связаны водородными связями с атомами кислорода, при этом каждый атом кислорода образует по две водородные связи (используя обе неподеленные пары электронов). Такая структура делает лед более " рыхлым"по сравнению с жидкой водой, где часть водородных связей оказывается разорванной, и молекулы получают возможность несколько плотнее " упаковаться". Эта особенность структуры льда объясняет, почему, в отличие от большинства других веществ, вода в твердом состоянии имеет меньшую плотность, чем в жидком. Максимальной плотности вода достигает при 4 °С –при этой температуре рвется достаточно много водородных связей, а тепловое расширение еще не очень сильно сказывается на плотности.
Водородные связи имеют очень большое значение в нашей жизни. Представим себе на минуту, что водородные связи перестали образовываться. Вот некоторые последствия:

  • вода при комнатной температуре стала бы газообразной, так как ее температура кипения понизилась бы до примерно –80 °С;
  • все водоемы стали бы промерзать со дна, так как плотность льда была бы больше плотности жидкой воды;
  • перестала бы существовать двойная спираль ДНК и многое другое.

Приведенных примеров достаточно, чтобы понять, что в этом случае природа на нашей планете стала бы совсем иной.

ВОДОРОДНАЯ СВЯЗЬ, УСЛОВИЯ ЕЕ ОБРАЗОВАНИЯ.
Формула этилового спирта СН 3 –СН 2 –О–Н. Между какими атомами разных молекул этого вещества образуются водородные связи? Составьте структурные формулы, иллюстрирующие их образование.
2.Водородные связи существуют не только в индивидуальных веществах, но и в растворах. Покажите с помощью структурных формул, как образуются водородные связи в водном растворе а) аммиака, б) фтороводорода, в) этанола (этилового спирта). = 2Н 2 О.
Обе эти реакции протекают в воде постоянно и с равной скоростью, следовательно, в воде существует равновесие: 2Н 2 О AН 3 О + ОН .
Это равновесие называется равновесием автопротолиза воды.

Прямая реакция этого обратимого процесса эндотермична, поэтому при нагревании автопротолиз усиливается, при комнатной же температуре равновесие сдвинуто влево, то есть концентрация ионов Н 3 О и ОН ничтожны. Чему же они равны?
По закону действующих масс

Но из-за того, что число прореагировавших молекул воды по сравнению с общим числом молекул воды незначительно, можно считать, что концентрация воды при автопротолизе практически не изменяется, и 2 = const Такая низкая концентрация разноименно заряженных ионов в чистой воде объясняет, почему эта жидкость, хоть и плохо, но все же проводит электрический ток.

АВТОПРОТОЛИЗ ВОДЫ, КОНСТАНТА АВТОПРОТОЛИЗА (ИОННОЕ ПРОИЗВЕДЕНИЕ) ВОДЫ.
Ионное произведение жидкого аммиака (температура кипения –33 °С) равно 2·10 –28 . Составьте уравнение автопротолиза аммиака. Определите концентрацию ионов аммония в чистом жидком аммиаке. Электропроводность какого из веществ больше, воды или жидкого аммиака?

1. Получение водорода и его горение (восстановительные свойства).
2. Получение кислорода и горение веществ в нем (окислительные свойства).

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом - выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода - реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН 4 + 2Н 2 0 = CO 2 + 4Н 2 - 165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который применяется иногда и в промышленности,- разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H 2 O → H 2 + 2NaOH + Cl 2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H 2 O + C ⇄ H 2 + CO

3.Из природного газа.

Конверсияс водяным паром: CH 4 + H 2 O ⇄ CO + 3H 2 (1000 °C) Каталитическое окисление кислородом: 2CH 4 + O 2 ⇄ 2CO + 4H 2

4. Крекинг и реформинг углеводородов в процессе переработки нефти.

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и соляную кислоту:

Zn + 2HCl → ZnCl 2 + H 2

2.Взаимодействие кальция с водой:

Ca + 2H 2 O → Ca(OH) 2 + H 2

3.Гидролиз гидридов:

NaH + H 2 O → NaOH + H 2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2 Zn + 2KOH + 2H 2 O → K 2 + H 2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H 3 O + + 2e - → H 2 + 2H 2 O

  • Биореактор для производства водорода

Физические свойства

Газообразный водород может существовать в двух формах (модификациях) - в виде орто - и пара-водорода.

В молекуле ортоводорода (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода (т. пл. −259,32 °C, т. кип. −252,89 °C) - противоположно друг другу (антипараллельны).

Разделить аллотропные формы водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных аллотропных форм. Молекула водорода двухатомна - Н₂. При обычных условиях - это газ без цвета, запаха и вкуса. Водород - самый лёгкий газ, его плотность во много раз меньше плотности воздуха. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Химические свойства

Молекулы водорода Н₂ довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия: Н 2 =2Н - 432 кДж Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция: Ca + Н 2 = СаН 2 и с единственным неметаллом - фтором, образуя фтороводород: F 2 +H 2 =2HF С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении. Он может «отнимать» кислород от некоторых оксидов, наприме: CuO + Н 2 = Cu + Н 2 0 Записанное уравнение отражает реакцию восстановления. Реакциями восстановления называются процессы, в результате которых от соединения отнимается кислород; вещества, отнимающие кислород, называются восстановителями (при этом они сами окисляются). Далее будет дано и другое определение понятиям «окисление» и «восстановление». А данное определение, исторически первое, сохраняет значение и в настоящее время, особенно в органической химии. Реакция восстановления противоположна реакции окисления. Обе эти реакции всегда протекают одновременно как один процесс: при окислении (восстановлении) одного вещества обязательно одновременно происходит восстановление (окисление) другого.

N 2 + 3H 2 → 2 NH 3

С галогенами образует галогеноводороды :

F 2 + H 2 → 2 HF, реакция протекает со взрывом в темноте и при любой температуре, Cl 2 + H 2 → 2 HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H 2 → CH 4

Взаимодействие со щелочными и щёлочноземельными металлами

Водород образует с активными металлами гидриды :

Na + H 2 → 2 NaH Ca + H 2 → CaH 2 Mg + H 2 → MgH 2

Гидриды - солеобразные, твёрдые вещества, легко гидролизуются:

CaH 2 + 2H 2 O → Ca(OH) 2 + 2H 2

Взаимодействие с оксидами металлов (как правило, d-элементов)

Оксиды восстанавливаются до металлов:

CuO + H 2 → Cu + H 2 O Fe 2 O 3 + 3H 2 → 2 Fe + 3H 2 O WO 3 + 3H 2 → W + 3H 2 O

Гидрирование органических соединений

При действии водорода на ненасыщенные углеводороды в присутствии никелевого катализатора и повышенной температуре происходит реакция гидрирования :

CH 2 =CH 2 + H 2 → CH 3 -CH 3

Водород восстанавливает альдегиды до спиртов:

CH 3 CHO + H 2 → C 2 H 5 OH.

Геохимия водорода

Водород - основной строительный материал вселенной. Это самый распространённый элемент, и все элементы образуются из него в результате термоядерных и ядерных реакций.

Свободный водород H 2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением. Он мигрирует в верхние слои атмосферы и улетучивается в космос.

Применение

  • Водородная энергетика

Атомарный водород используется для атомно-водородной сварки.

В пищевой промышленности водород зарегистрирован в качестве пищевой добавки E949 , как упаковочный газ.

Особенности обращения

Водород при смеси с воздухом образует взрывоопасную смесь - так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21%. Также водород пожароопасен. Жидкий водород при попадении на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4% до 96 % объёмных. При смеси с воздухом от 4% до 75(74) % объёмных.

Использование водорода

В химической промышленности водород используют при производстве аммиака, мыла и пластмасс. В пищевой промышленности с помощью водорода из жидких растительных масел делают маргарин. Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько ужасных катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют газом гелием. Водород используют также в качестве ракетного топлива. Когда-нибудь водород, возможно, будут широко применять как топливо для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар (правда, само получение водорода приводит к некоторому загрязнению окружающей среды). Наше Солнце в основном состоит из водорода. Солнечное тепло и свет - это результат выделения ядерной энергии при слиянии ядер водорода.

Использование водорода в качестве топлива (экономическая эффективность)

Важнейшей характеристикой веществ, используемых в качестве топлива, является их теплота сгорания. Из курса общей химии известно, что реакция взаимодействия водорода с кислородом происходит с выделением тепла. Если взять 1 моль H 2 (2 г) и 0,5 моль O 2 (16 г) при стандартных условиях и возбудить реакцию, то согласно уравнению

Н 2 + 0,5 О 2 = Н 2 О

после завершения реакции образуется 1 моль H 2 O (18 г) с выделением энергии 285,8 кДж/моль (для сравнения: теплота сгорания ацетилена составляет 1300 кДж/моль, пропана - 2200 кДж/моль). 1 м³ водорода весит 89,8 г (44,9 моль). Поэтому для получения 1 м³ водорода будет затрачено 12832,4 кДж энергии. С учётом того, что 1 кВт·ч = 3600 кДж, получим 3,56 кВт·ч электроэнергии. Зная тариф на 1 кВт·ч электричества и стоимость 1 м³ газа, можно делать вывод о целесообразности перехода на водородное топливо.

Например, экспериментальная модель Honda FCX 3 поколения с баком водорода 156 л (содержит 3,12 кг водорода под давлением 25 МПа) проезжает 355 км. Соответственно из 3,12 кг H2 получается 123,8 кВт·ч. На 100 км расход энергии составит 36,97 кВт·ч. Зная стоимость электроэнергии, стоимость газа или бензина, их расход для автомобиля на 100 км легко подсчитать отрицательный экономический эффект перехода автомобилей на водородное топливо. Скажем (Россия 2008), 10 центов за кВт·ч электроэнергии приводят к тому, что 1 м³ водорода приводят к цене 35,6 цента, а с учётом КПД разложения воды 40-45 центов, такое же количество кВт·ч от сжигания бензина стоит 12832,4кДж/42000кДж/0,7кг/л*80центов/л=34 цента по розничным ценам, тогда как для водорода мы высчитывали идеальный вариант, без учёта транспортировки, амортизации оборудования и т. д. Для метана с энергией сгорания около 39 МДж на м³ результат будет ниже в два-четыре раза из-за разницы в цене (1м³ для Украины стоит 179$, а для Европы 350$). То есть эквивалентное количество метана будет стоить 10-20 центов.

Однако не следует забывать того, что при сжигании водорода мы получаем чистую воду, из которой его и добыли. То есть имеем возобновляемый запасатель энергии без вреда для окружающей среды, в отличие от газа или бензина, которые являются первичными источниками энергии.

Php on line 377 Warning: require(http://www..php): failed to open stream: no suitable wrapper could be found in /hsphere/local/home/winexins/сайт/tab/vodorod.php on line 377 Fatal error: require(): Failed opening required "http://www..php" (include_path="..php on line 377