Найдите наибольшее и наименьшее значения заданной функции. Наибольшее и наименьшее значения функции. Задачи на отыскание наибольших и наименьших значений величин

\(\blacktriangleright\) Для того, чтобы найти наибольшее/наименьшее значение функции на отрезке \(\) , необходимо схематично изобразить график функции на этом отрезке.
В задачах из данной подтемы это можно сделать с помощью производной: найти промежутки возрастания (\(f">0\) ) и убывания (\(f"<0\) ) функции, критические точки (где \(f"=0\) или \(f"\) не существует).

\(\blacktriangleright\) Не стоит забывать, что наибольшее/наименьшее значение функция может принимать не только во внутренних точках отрезка \(\) , а также на его концах.

\(\blacktriangleright\) Наибольшее/наименьшее значение функции - это значение координаты \(y=f(x)\) .

\(\blacktriangleright\) Производная сложной функции \(f(t(x))\) ищется по правилу: \[{\Large{f"(x)=f"(t)\cdot t"(x)}}\]
\[\begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{1} & c & 0\\&&\\ \textbf{2} & x^a & a\cdot x^{a-1}\\&&\\ \textbf{3} & \ln x & \dfrac1x\\&&\\ \textbf{4} & \log_ax & \dfrac1{x\cdot \ln a}\\&&\\ \textbf{5} & e^x & e^x\\&&\\ \textbf{6} & a^x & a^x\cdot \ln a\\&&\\ \textbf{7} & \sin x & \cos x\\&&\\ \textbf{8} & \cos x & -\sin x\\ \hline \end{array} \quad \quad \quad \quad \begin{array}{|r|c|c|} \hline & \text{Функция } f(x) & \text{Производная } f"(x)\\ \hline \textbf{9} & \mathrm{tg}\, x & \dfrac1{\cos^2 x}\\&&\\ \textbf{10} & \mathrm{ctg}\, x & -\,\dfrac1{\sin^2 x}\\&&\\ \textbf{11} & \arcsin x & \dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{12} & \arccos x & -\,\dfrac1{\sqrt{1-x^2}}\\&&\\ \textbf{13} & \mathrm{arctg}\, x & \dfrac1{1+x^2}\\&&\\ \textbf{14} & \mathrm{arcctg}\, x & -\,\dfrac1{1+x^2}\\ \hline \end{array}\]

Задание 1 #2357

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = e^{x^2 - 4}\) на отрезке \([-10; -2]\) .

ОДЗ: \(x\) – произвольный.

1) \

\ Таким образом, \(y" = 0\) при \(x = 0\) .

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-10; -2]\) :


4) Эскиз графика на отрезке \([-10; -2]\) :


Таким образом, наименьшего на \([-10; -2]\) значения функция достигает в \(x = -2\) .

\ Итого: \(1\) – наименьшее значение функции \(y\) на \([-10; -2]\) .

Ответ: 1

Задание 2 #2355

Уровень задания: Равен ЕГЭ

\(y = \sqrt{2}\cdot\sqrt{x^2 + 1}\) на отрезке \([-1; 1]\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\sqrt{2}\cdot\dfrac{x}{\sqrt{x^2 + 1}} = 0\qquad\Leftrightarrow\qquad x = 0\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \([-1; 1]\) :


4) Эскиз графика на отрезке \([-1; 1]\) :


Таким образом, наибольшего на \([-1; 1]\) значения функция достигает в \(x = -1\) или в \(x = 1\) . Сравним значения функции в этих точках.

\ Итого: \(2\) – наибольшее значение функции \(y\) на \([-1; 1]\) .

Ответ: 2

Задание 3 #2356

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции \(y = \cos 2x\) на отрезке \(\) .

ОДЗ: \(x\) – произвольный.

1) \

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-2\cdot \sin 2x = 0\qquad\Leftrightarrow\qquad 2x = \pi n, n\in\mathbb{Z}\qquad\Leftrightarrow\qquad x = \dfrac{\pi n}{2}, n\in\mathbb{Z}\,.\] Производная существует при любом \(x\) .

2) Найдём промежутки знакопостоянства \(y"\) :


(здесь бесконечное число промежутков, в которых чередуются знаки производной).

3) Найдём промежутки знакопостоянства \(y"\) на рассматриваемом отрезке \(\) :


4) Эскиз графика на отрезке \(\) :


Таким образом, наименьшего на \(\) значения функция достигает в \(x = \dfrac{\pi}{2}\) .

\ Итого: \(-1\) – наименьшее значение функции \(y\) на \(\) .

Ответ: -1

Задание 4 #915

Уровень задания: Равен ЕГЭ

Найдите наибольшее значение функции

\(y = -\log_{17}(2x^2 - 2\sqrt{2}x + 2)\) .

ОДЗ: \(2x^2 - 2\sqrt{2}x + 2 > 0\) . Решим на ОДЗ:

1) Обозначим \(2x^2-2\sqrt{2}x+2=t(x)\) , тогда \(y(t)=-\log_{17}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[-\dfrac{1}{\ln 17}\cdot\dfrac{4x-2\sqrt{2}}{2x^2-2\sqrt{2}x+2} = 0\qquad\Leftrightarrow\qquad 4x-2\sqrt{2} = 0\] – на ОДЗ, откуда находим корень \(x = \dfrac{\sqrt{2}}{2}\) . Производная функции \(y\) не существует при \(2x^2-2\sqrt{2}x+2 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, наибольшее значение функция достигает в \(x = \dfrac{\sqrt{2}}{2}\) :

\(y\left(\dfrac{\sqrt{2}}{2}\right) = -\log_{17}1 = 0\) ,

Итого: \(0\) – наибольшее значение функции \(y\) .

Ответ: 0

Задание 5 #2344

Уровень задания: Равен ЕГЭ

Найдите наименьшее значение функции

\(y = \log_{3}(x^2 + 8x + 19)\) .

ОДЗ: \(x^2 + 8x + 19 > 0\) . Решим на ОДЗ:

1) Обозначим \(x^2 + 8x + 19=t(x)\) , тогда \(y(t)=\log_{3}t\) .

Найдём критические точки (то есть внутренние точки области определения функции, в которых её производная равна \(0\) или не существует): \[\dfrac{1}{\ln 3}\cdot\dfrac{2x+8}{x^2 + 8x + 19} = 0\qquad\Leftrightarrow\qquad 2x+8 = 0\] – на ОДЗ, откуда находим корень \(x = -4\) . Производная функции \(y\) не существует при \(x^2 + 8x + 19 = 0\) , но у данного уравнения отрицательный дискриминант, следовательно, у него нет решений. Для того, чтобы найти наибольшее/наименьшее значение функции, нужно понять, как схематично выглядит её график.

2) Найдём промежутки знакопостоянства \(y"\) :

3) Эскиз графика:

Таким образом, \(x = -4\) – точка минимума функции \(y\) и наименьшее значение достигается в ней:

\(y(-4) = \log_{3}3 = 1\) .

Итого: \(1\) – наименьшее значение функции \(y\) .

Ответ: 1

Задание 6 #917

Уровень задания: Сложнее ЕГЭ

Найдите наибольшее значение функции

\(y = -e^{(x^2 - 12x + 36 + 2\ln 2)}\) .

В задании B14 из ЕГЭ по математике требуется найти наименьшее или наибольшее значение функции одной переменной. Это достаточно тривиальная задача из математического анализа, и именно по этой причине научиться решать её в норме может и должен каждый выпускник средней школы. Разберём несколько примеров, которые школьники решали на диагностической работе по математике, прошедшей в Москве 7 декабря 2011 года.

В зависимости от промежутка, на котором требуется найти максимальное или минимальное значение функции, для решения этой задачи используется один из следующих стандартных алгоритмов.

I. Алгоритм нахождения наибольшего или наименьшего значения функции на отрезке:

  • Найти производную функции.
  • Выбрать из точек, подозрительных на экстремум, те, которые принадлежат данному отрезку и области определения функции.
  • Вычислить значения функции (не производной!) в этих точках.
  • Среди полученных значений выбрать наибольшее или наименьшее, оно и будет искомым.

Пример 1. Найдите наименьшее значение функции
y = x 3 – 18x 2 + 81x + 23 на отрезке .

Решение: действуем по алгоритму нахождения наименьшего значения функции на отрезке:

  • Область определения функции не ограничена: D(y) = R.
  • Производная функции равна: y’ = 3x 2 – 36x + 81. Область определения производной функции также не ограничена: D(y’) = R.
  • Нули производной: y’ = 3x 2 – 36x + 81 = 0, значит x 2 – 12x + 27 = 0, откуда x = 3 и x = 9, в наш промежуток входит только x = 9 (одна точка, подозрительная на экстремум).
  • Находим значение функции в точке, подозрительной на экстремум и на краях промежутка. Для удобства вычислений представим функцию в виде: y = x 3 – 18x 2 + 81x + 23 = x (x -9) 2 +23:
    • y (8) = 8 · (8-9) 2 +23 = 31;
    • y (9) = 9 · (9-9) 2 +23 = 23;
    • y (13) = 13 · (13-9) 2 +23 = 231.

Итак, из полученных значений наименьшим является 23. Ответ: 23.

II. Алгоритм нахождения наибольшего или наименьшего значения функции:

  • Найти область определения функции.
  • Найти производную функции.
  • Определить точки, подозрительные на экстремум (те точки, в которых производная функции обращается в ноль, и точки, в которых не существует двухсторонней конечной производной).
  • Отметить эти точки и область определения функции на числовой прямой и определить знаки производной (не функции!) на получившихся промежутках.
  • Определить значения функции (не производной!) в точках минимума (те точки, в которых знак производной меняется с минуса на плюс), наименьшее из этих значений будет наименьшим значением функции. Если точек минимума нет, то у функции нет наименьшего значения.
  • Определить значения функции (не производной!) в точках максимума (те точки, в которых знак производной меняется с плюса на минус), наибольшее из этих значений будет наибольшим значением функции. Если точек максимума нет, то у функции нет наибольшего значения.

Пример 2. Найдите наибольшее значение функции.

На уроке по теме «Применение производной для нахождения наибольшего и наименьшего значений непрерывной функции на промежутке» будут рассмотрены относительно простые задачи на нахождение наибольшего и наименьшего значений функции на заданном промежутке с помощью производной.

Тема: Производная

Урок: Применение производной для отыскания наибольшего и наименьшего значений непрерывной функции на промежутке

На этом занятии рассмотрим более простую задачу, а именно, будет задан промежуток, будет задана непрерывная функция на этом промежутке. Надо узнать наибольшее и наименьшее значение заданной функции на заданном промежутке .

№ 32.1 (б). Дано: , . Нарисуем график функции (см. рис.1).

Рис. 1. График функции .

Известно, что эта функция возрастает на промежутке , значит, она возрастает и на отрезке . А значит, если найти значение функции в точках и , то будут известны пределы изменения данной функции, ее самое большое и самое маленькое значение.

Когда аргумент возрастает от до 8, функция возрастает от до .

Ответ: ; .

№ 32.2 (а) Дано: Найти наибольшее и наименьшее значения функции на заданном промежутке.

Построим график этой функции (см. рис.2).

Если аргумент меняется на промежутке , то функция возрастает от -2 до 2. Если аргумент возрастает от , то функция убывает от 2 до 0.

Рис. 2. График функции .

Найдем производную .

, . Если , то и это значение принадлежит заданному отрезку . Если , то . Легко проверить, если принимает другие значения, соответствующие стационарные точки выходят за пределы заданного отрезка. Сравним значения функции на концах отрезка и в отобранных точках, в которых производная равна нулю. Найдем

;

Ответ: ;.

Итак, ответ получен. Производную в данном случае можно использовать, можно не использовать, применить свойства функции, которые были изучены ранее. Так бывает не всегда, иногда применение производной - это единственный метод, который позволяет решать подобные задачи.

Дано: , . Найти наибольшее и наименьшее значение функции на данном отрезке.

Если в предыдущем случае можно было обойтись без производной - мы знали, как себя ведет функция, то в данном случае функция довольно сложная. Поэтому, ту методику, которую мы упомянули на предыдущей задаче, применим в полном объеме.

1. Найдем производную . Найдем критические точки , отсюда , - критические точки. Из них выбираем те, которые принадлежат данному отрезку: . Сравним значение функции в точках , , . Для этого найдем

Проиллюстрируем результат на рисунке (см. рис.3).

Рис. 3. Пределы изменения значений функции

Видим, что если аргумент меняется от 0 до 2, функция изменяется в пределах от -3 до 4. Функция меняется не монотонно: она либо возрастает, либо убывает.

Ответ: ;.

Итак, на трех примерах была продемонстрирована общая методика нахождения наибольшего и наименьшего значения функции на промежутке, в данном случае - на отрезке.

Алгоритм решения задачи на нахождение наибольшего и наименьшего значений функции:

1. Найти производную функции.

2. Найти критические точки функции и отобрать те точки, которые находятся на заданном отрезке.

3. Найти значения функции на концах отрезка и в отобранных точках.

4. Сравнить эти значения, и выбрать наибольшее и наименьшее.

Рассмотрим еще один пример.

Найти наибольшее и наименьшее значение функции , .

Ранее был рассмотрен график этой функции (см. рис.4).

Рис. 4. График функции .

На промежутке область значения этой функции . Точка - точка максимума. При - функция возрастает, при - функция убывает. Из чертежа видно, что , - не существует.

Итак, на уроке рассмотрели задачу о наибольшем и наименьшем значении функции, когда заданным промежутком является отрезок; сформулировали алгоритм решения подобных задач.

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. ЗвавичЛ.И., Шляпочник Л.Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А.П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г.И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

Дополнительные веб-ресурсы

2. Портал Естественных Наук ().

Сделай дома

№ 46.16, 46.17 (в) (Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.)

Исследование функций и их графиков - это тема, которой уделяется особое внимание в рамках школьной программы старших классов. Некоторые основы математического анализа - дифференцирования - включены в профильный уровень экзамена по математике. У некоторых школьников возникают проблемы с этой темой, так как они путают графики функции и производной, а также забывают алгоритмы. В этой статье будут рассмотрены основные типы заданий и способы их решения.

Что такое значение функции?

Математическая функция представляет собой особое уравнение. Оно устанавливает взаимосвязь между числами. Функция зависит от значения аргумента.

Значение функции рассчитывается по заданной формуле. Для этого следует подставить любой аргумент, который соответствует области допустимых значений, в эту формулу на место х и выполнить необходимые математические операции. Какие?

Как можно найти наименьшее значение функции, используя график функции?

Графическое изображение зависимости функции от аргумента называется графиком функции. Он строится на плоскости с определенным единичным отрезком, где по горизонтальной оси абсцисс откладывается значение переменной, или аргумента, а по вертикальной оси ординат - соответствующее ему значение функции.

Чем больше значение аргумента, тем правее он лежит на графике. И чем больше значение самой функции, тем выше находится точка.

О чем это говорит? Самым маленьким значением функции будет являться точка, которая лежит ниже всего на графике. Для того чтобы найти его на отрезке графика, нужно:

1) Найти и отметить концы этого отрезка.

2) Визуально определить, какая точка на этом отрезке лежит ниже всего.

3) В ответ записать ее числовое значение, которое можно определить, спроецировав точку на ось ординат.

на графике производной. Где искать?

Однако при решении задач иногда дан график не функции, а ее производной. Для того чтобы случайно не допустить глупую ошибку, лучше внимательно читать условия, так как от этого зависит, где нужно искать точки экстремума.

Итак, производная - это мгновенная скорость возрастания функции. Согласно геометрическому определению производная соответствует угловому коэффициенту касательной, которая непосредственно проведена к данной точке.

Известно, что в точках экстремума касательная параллельна оси Ox. Это значит, что ее угловой коэффициент - 0.

Из этого можно сделать вывод, что в точках экстремума производная лежит на оси абсцисс или обращается в ноль. Но кроме того, в этих точках функция меняет свое направление. То есть после периода возрастания начинает убывать, а производная, соответственно, сменяется с положительной на отрицательную. Или наоборот.

Если производная из положительной становится отрицательной - это точка максимума. Если из отрицательной становится положительной - точка минимума.

Важно: если в задании требуется указать точку минимума или максимума, то в ответ следует записать соответствующее значение по оси абсцисс. Но в случае, если требуется найти значение функции, то предварительно нужно подставить соответствующее значение аргумента в функцию и рассчитать его.

Как находить точки экстремума с помощью производной?

Рассмотренные примеры в основном относятся к заданию под номером 7 экзамена, которое подразумевает работу с графиком производной или первообразной. А вот задание 12 ЕГЭ - найти наименьшее значение функции на отрезке (иногда - наибольшее) - выполняется без каких-либо чертежей и требует базовых навыков математического анализа.

Для его выполнения нужно уметь находить точки экстремума с помощью производной. Алгоритм их нахождения таков:

  • Найти производную от функции.
  • Приравнять ее к нулю.
  • Найти корни уравнения.
  • Проверить, являются ли полученные точки точками экстремума или перегиба.

Для этого нужно начертить схему и на получившихся промежутках определить знаки производной, подставляя числа, принадлежащие отрезкам, в производную. Если при решении уравнения вы получили корни двойной кратности - это точки перегиба.

  • Применив теоремы, определить какие точки являются точками минимума, а какие - максимума.

Вычисление наименьшего значения функции с применением производной

Однако, выполнив все эти действия, мы найдем значения точек минимума и максимума по оси абсцисс. Но как найти наименьшее значение функции на отрезке?

Что необходимо сделать для того, чтобы найти число, которому соответствует функция в конкретной точке? Нужно подставить в данную формулу значение аргумента.

Точки минимума и максимума соответствуют наименьшему и наибольшему значению функции на отрезке. Значит, чтобы найти значение функции, нужно рассчитать функцию, используя полученные значения х.

Важно! Если в задании требуется указать точку минимума или максимума, то в ответ следует записать соответствующее значение по оси абсцисс. Но в случае, если нужно найти значение функции, то предварительно следует подставить соответствующее значение аргумента в функцию и выполнить необходимые математические операции.

Что делать, если на данном отрезке отсутствуют точки минимума?

Но как найти наименьшее значение функции на отрезке, на котором отсутствуют точки экстремума?

Это значит, что на нем функция монотонно убывает или возрастает. Тогда в функцию нужно подставить значение крайних точек этого отрезка. Есть два пути.

1) Рассчитав производную и промежутки, на которых она положительна или отрицательна, сделать вывод о том, убывает функция на данном отрезке или возрастает.

В соответствии с ними подставить в функцию большее или меньшее значение аргумента.

2) Просто подставить в функцию обе точки и сравнить полученные значения функции.

В каких заданиях нахождение производной необязательно

Как правило, в заданиях ЕГЭ все же нужно находить производную. Есть только пара исключений.

1) Парабола.

Вершина параболы находится по формуле.

Если a < 0, то ветви параболы направлены вниз. И ее вершина является точкой максимума.

Если a > 0, то ветви параболы направлены вверх, вершина - точка минимума.

Рассчитав точку вершины параболы, следует подставить ее значение в функцию и вычислить соответствующее значение функции.

2) Функция y = tg x. Или y = ctg x.

Эти функции являются монотонно возрастающими. Поэтому, чем больше значение аргумента, тем больше значение самой функции. Далее мы рассмотрим, как найти наибольшее и наименьшее значение функции на отрезке с примерами.

Основные типы заданий

Задание: наибольшее или наименьшее значение функции. Пример на графике.

На рисунке вы видите график производной функции f (x) на интервале [-6; 6]. В какой точке отрезка [-3; 3] f (x) принимает наименьшее значение?

Итак, для начала следует выделить указанный отрезок. На нем функция один раз принимает нулевое значение и меняет свой знак - это точка экстремума. Так как производная из отрицательной становится положительной, значит, это точка минимума функции. Этой точке соответствует значение аргумента 2.

Продолжаем рассматривать примеры. Задание: найти наибольшее и наименьшее значение функции на отрезке.

Найдите наименьшее значение функции y = (x - 8) e x-7 на отрезке .

1. Взять производную от сложной функции.

y" (x) = (x - 8) e x-7 = (x - 8)" (e x-7) + (x - 8) (e x-7)" = 1 * (e x-7) + (x - 8) (e x-7) = (1 + x - 8) (e x-7) = (x - 7) (e x-7)

2. Приравнять полученную производную к нулю и решить уравнение.

(x - 7) (e x-7) = 0

x - 7 = 0, или e x-7 = 0

x = 7; e x-7 ≠ 0, нет корней

3. Подставить в функцию значение крайних точек, а также полученные корни уравнения.

y (6) = (6 - 8) e 6-7 = -2e -1

y (7) = (7 - 8) e 7-7 = -1 * e 0 = -1 * 1 = -1

y (8) = (8 - 8) e 8-7 = 0 * e 1 = 0

Итак, в этой статье была рассмотрена основная теория о том, как найти наименьшее значение функции на отрезке, необходимая для успешного решения заданий ЕГЭ по профильной математике. Также элементы математического анализа применяются при решении заданий из части С экзамена, но очевидно, они представляют иной уровень сложности, и алгоритмы их решений сложно уместить в рамки одного материала.


Постановка задачи 2:

Дана функция , определенная и непрерывная на некотором промежутке . Требуется найти наибольшее (наименьшее) значение функции на этом промежутке.

Теоретические основы.
Теорема (Вторая теорема Вейерштрасса):

Если функция определена и непрерывна в замкнутом промежутке , то она достигает в этом промежутке своих наибольшего и наименьшего значений.

Функция может достигать своих наибольших и наименьших значений либо на внутренних точках промежутка, либо на его границах. Проиллюстрируем все возможные варианты.

Пояснение:
1) Функция достигает своего наибольшего значения на левой границе промежутка в точке , а своего наименьшего значения на правой границе промежутка в точке .
2) Функция достигает своего наибольшего значения в точке (это точка максимума) , а своего наименьшего значения на правой границе промежутка в точке .
3) Функция достигает своего наибольшего значения на левой границе промежутка в точке , а своего наименьшего значения в точке (это точка минимума).
4) Функция постоянна на промежутке, т.е. она достигает своего минимального и максимального значения в любой точке промежутка, причем минимальное и максимальное значения равны между собой.
5) Функция достигает своего наибольшего значения в точке , а своего наименьшего значения точке (несмотря на то, что функция имеет на этом промежутке как максимум, так и минимум).
6) Функция достигает своего наибольшего значения в точке (это точка максимума), а своего наименьшего значения в точке (это точка минимума).
Замечание:

«Максимум» и «максимальное значение» — разные вещи. Это следует из определения максимума и интуитивного понимания словосочетания «максимальное значение».

Алгоритм решения задачи 2.



4) Выбрать из полученных значений наибольшее (наименьшее) и записать ответ.

Пример 4:

Определить наибольшее и наименьшее значение функции на отрезке .
Решение:
1) Найти производную функции .

2) Найти стационарные точки (и точки, подозрительные на экстремум), решив уравнение . Обратить внимание на точки, в которых не существует двусторонней конечной производной.

3) Вычислить значения функции в стационарных точках и на границах интервала.



4) Выбрать из полученных значений наибольшее (наименьшее) и записать ответ.

Функция на этом отрезке достигает своего наибольшего значения в точке с координатами .

Функция на этом отрезке достигает своего наименьшего значения в точке с координатами .

В правильность вычислений можно убедиться, взглянув на график исследуемой функции.


Замечание: Наибольшего значения функция достигает в точке максимума, а наименьшего – на границе отрезка.

Частный случай.

Предположим, требуется найти максимально и минимальное значение некоторой функции на отрезке. После выполнение первого пункта алгоритма, т.е. вычисления производной, становится ясно, что, например, она принимает только отрицательные значения на всем рассматриваемом отрезке. Помним, что если производная отрицательна, то функция убывает. Получили, что на всем отрезке функция убывает. Эта ситуация отображена на графике № 1 в начале статьи.

На отрезке функция убывает, т.е. точек экстремумов у нее нет. Из картинки видно, что наименьшее значение функция примет на правой границе отрезка, а наибольшее значение — на левой. если же производная на отрезке всюду положительна, то функция возрастает. Наименьшее значение — на левой границе отрезка, наибольшее — на правой.

© 2024. iro-to.ru. Умники и умницы - Образовательный портал.