Найти периметр прямоугольника с разными сторонами. Что такое периметр и как его найти? Что мы узнали

Ниже в статье вы узнаете что такое и как найти периметр прямоугольника если известны его стороны. А также как найти стороны прямоугольника, если известен его периметр. И ещё одна интересная строительная прикладная задача.

Немного теории:

Периметр - это длина геометрической фигуры по её внешней границе.

Периметр прямоугольника - это сумма длин его сторон.

Формулы для вычисления периметра прямоугольника: P = 2*(a+b) или P = a + a + b + b.

Резюмируем! Для того чтобы вычислить периметр прямоугольника необходимо сложить все его стороны.

Типовые математические и практические задачи:

Задача №1:

Исходные данные: Определить периметр прямоугольника с длинами сторон 5 см и 10 см.

Решение:

Согласно формуле периметр прямоугольника равен = 2 * (5 + 10) = 30 см.

Ответ: 30 см.

Задача №2:

Исходные данные: Определить стороны прямоугольника выраженные целыми числами, если периметр прямоугольника равен 10.

Решение:

По формуле определяем сумму длин сторон (a + b) = P / 2 = 10 / 2 = 5
Целыми значениями сторон могут быть только значения 1 + 4 = 5 и 2 + 3 = 5

Ответ: Длины сторон могут быть только 2 и 3 или 1 и 4.

Задача №3 (практическая):

Исходные данные: Определить число плинтусов в достаточном количестве для ремонта пола в комнате длиной 5 метров и шириной 3 метра, если длина одного плинтуса равна 3 метра.

Решение:

Периметр комнаты = 2 * (5 + 3) = 16 метров
Количество плинтусов = 16 / 3 = 5,33 штук
Обычно в строительных магазинах плинтусы продаются не погонными метрами, а поштучно. Поэтому принимаем следующее целое число. Это шесть.

Ответ: Количество плинтусов 6 штук.

В заключение:

Решение задачи вычисления периметра является достаточно простой математической задачей, но имеющей очень важное практическое значение например в строительстве или генеральном планировании территории.

На этой странице представлен самый простой онлайн калькулятор для расчета периметра прямоугольника. С помощью этой программы вы в один клик сможете найти периметр прямоугольника, если известны его длина и ширина.

На этом занятии мы познакомимся с новым понятием - периметр прямоугольника. Мы сформулируем определение этого понятия, выведем формулу для его вычисления. Также повторим сочетательный закон сложения и распределительный закон умножения.

На данном уроке мы познакомимся с периметром прямоугольника и его вычислением.

Рассмотрим следующую геометрическую фигуру (рис. 1):

Рис. 1. Прямоугольник

Данная фигура - прямоугольник. Вспомним, какие отличительные особенности прямоугольника мы знаем.

Прямоугольник - это четырехугольник, у которого четыре прямых угла и стороны попарно равны.

Что в нашей жизни может иметь прямоугольную форму? Например, книга, крышка стола или земельный участок.

Рассмотрим следующую задачу:

Задача 1 (рис. 2)

Вокруг земельного участка строителям понадобилось поставить забор. Ширина этого участка - 5 метров, длина - 10 метров. Забор какой длины получится у строителей?

Рис. 2. Иллюстрация к задаче 1

Забор ставят по границам участка, поэтому, чтобы узнать длину забора, нужно знать длину каждой из сторон. У данного прямоугольника стороны равны: 5 метров, 10 метров, 5 метров, 10 метров. Составим выражение для подсчета длины забора: 5+10+5+10. Воспользуемся переместительным законом сложения: 5+10+5+10=5+5+10+10. В данном выражении есть суммы одинаковых слагаемых (5+5 и 10+10). Заменим суммы одинаковых слагаемых произведениями: 5+5+10+10=5·2+10·2. Теперь воспользуемся распределительным законом умножения относительно сложения: 5·2+10·2=(5+10)·2.

Найдем значение выражения (5+10)·2. Сначала выполняем действие в скобках: 5+10=15. А затем повторяем число 15 два раза: 15·2=30.

Ответ: 30 метров.

Периметр прямоугольника - сумма длин всех его сторон. Формула для подсчета периметра прямоугольника : , здесь a - длина прямоугольника, а b - ширина прямоугольника. Сумма длины и ширины называется полупериметром . Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, то есть умножить на 2.

Воспользуемся формулой периметра прямоугольника и найдем периметр прямоугольника со сторонами 7 см и 3 см: (7+3)·2=20 (см).

Периметр любой фигуры измеряется в линейных единицах.

На данном уроке мы познакомились с периметром прямоугольника и формулой его вычисления.

Произведение числа и суммы чисел равно сумме произведений данного числа и каждого из слагаемых.

Если периметр - это сумма длин всех сторон фигуры, то полупериметр - сумма одной длины и одной ширины. Мы находим полупериметр, когда работаем по формуле нахождения периметра прямоугольника (когда мы выполняем первое действие в скобках - (a+b)).

Список литературы

  1. Александрова Э.И. Математика. 2 класс. - М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. - М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. - М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. Nsportal.ru ().
  3. Math-prosto.ru ().

Домашнее задание

  1. Найти периметр прямоугольника, у которого длина 13 метров, а ширина - 7 метров.
  2. Найти полупериметр прямоугольника, если его длина - 8 см, а ширина - 4 см.
  3. Найти периметр прямоугольника, если его полупериметр - 21 дм.

Периметр это сумма длин всех сторон, например прямоугольника, квадрата. Что бы его найти нужно сложить все стороны. А если у нас квадрат, то нужно одну сторону умножить на 4.
Например.
прямоугольник:
ширина 5 см
длина 8 см
5+5+8+8=26
квадрат:
ширина и длина 3 см
3 умножить на 4=12см

Периметр это сумма длин всех сторон геометрической фигуры обозначается буквой Р некоторые формулы нахождения периметра
треугольник
P=a+b+c
прямоугольник
P=2*(a+b)
квадрат
P=4*a


Похожие задачи:



1)найти сумму углов выпуклого двенадцати угольника, каждый угол выпуклого многоугольника=135* Найти число сторон этого многоугольника.

2) В выпуклом пятиугольнике 2стороны равны,3сторона на 3см больше, а 4 в 2 раза больше 1стороны, а 5тая на 4см меньше 4см. Найдите стороны пятиугольника если извесно что периметр =34см



1) Два насоса, работая вместе, заполняют бассейн за 4 часа. Первый насос заполняет бассейн в полтора раза быстрее, чем второй. За сколько часов заполняет бассейн первый насос?

2) Периметр параллелограмма равен 90 см и острый угол равен 60°. Диагональ параллелограмма делит его тупой угол на части в отношении 1:3. Найти длину большей стороны параллелограмма.

3) Второй член арифметической прогрессии равен 5, а четвертый ее член равен 11. Найти сумму первых пяти членов прогрессии.

4) Площадь параллелограмма равна 〖24см〗^2. Точка пересечения его диагоналей удалена от прямых, на которых лежат стороны, на 2 см и 3 см. Найти периметр параллелограмма.

Прямоугольник обладает многими отличительными особенностями, исходя из которых, выработаны правила вычисления его различных числовых характеристик. Итак, прямоугольник:

Плоская геометрическая фигура;
Четырехугольник;
Фигура, у которой противоположные стороны равны и параллельны, все углы прямые.

Периметр – это общая длина всех сторон фигуры.

Вычисление периметра прямоугольника — довольно простая задача.

Все, что вам нужно знать, это ширину и длину прямоугольника. Поскольку прямоугольник имеет две равные длины и две равные ширины, измеряется только одна сторона.

Периметр прямоугольника равен удвоенной сумме 2-х его сторон длины и ширины.

P = (a + b) 2, где a - длина прямоугольника, b - ширина прямоугольника.

Так же периметр прямоугольника можно найти при помощи суммы всех сторон.

P= a+a+b+b, где а– длина прямоугольника, b – ширина прямоугольника.

Периметр квадрата - это длина стороны квадрата, умноженная на 4.

P = a 4, где a - длина стороны квадрата.

Дополнение: Нахождение найти площади и периметра прямоугольников

В программе обучения за 3 класс предусмотрено изучение многоугольников и их особенностей. Для того чтобы понять, как найти периметр прямоугольника и площадь, разберемся, что подразумевается под этими понятиями.

Основные понятия

Нахождение периметра и площади требует знания некоторых терминов. К ним относятся:

  1. Прямой угол. Образуется из 2 лучей, имеющих общее начало в виде точки. При знакомстве с фигурами (3 класс) прямой угол определяют с помощью угольника.
  2. Прямоугольник. Это четырехугольник, все углы которого являются прямыми. Его стороны называют длиной и шириной. Как известно, противоположные стороны этой фигуры равны.
  3. Квадрат. Является четырехугольником, все стороны которого равны.

При знакомстве с многоугольниками их вершины могут называться АВСД. В математике принято именовать точки на чертежах буквами латинского алфавита. В названии многоугольника перечисляют все вершины без пропусков, например, треугольник ABC.

Вычисление периметра

Периметр многоугольника — это сумма длин всех его сторон. Эта величина обозначается латинской буквой P. Уровень знаний для предложенных примеров — 3 класс.

Задача №1: «Начертите прямоугольник 3 см шириной и 4 см длиной с вершинами ABCD. Найдите периметр прямоугольника ABCD».

Формула будет выглядеть так: P=AB+BC+CD+AD либо P=AB×2+BC×2.

Ответ: P=3+4+3+4=14 (см) либо P=3×2 + 4×2=14 (см).

Задача №2: «Как найти периметр прямоугольного треугольника ABC, если значения сторон равны 5, 4 и 3 см?».

Ответ: P=5+4+3=12 (см).

Задача №3: «Найдите периметр прямоугольника, одна сторона которого равна 7 см, а другая на 2 см длиннее».

Ответ: P=7+9+7+9=32 (см).

Задача №4: «Соревнования по плаванию проходили в бассейне, периметр которого составляет 120 м. Сколько метров проплыл участник соревнований, если ширина бассейна 10 м?».

В данной задаче стоит вопрос, как найти длину бассейна. Для решения найдите длины сторон прямоугольника. Ширина известна. Сумма длин двух неизвестных сторон должна составить 100 м. 120-10×2=100. Чтобы узнать расстояние, которое преодолел пловец, нужно разделить полученный результат на 2. 100:2=50.

Ответ: 50 (м).

Вычисление площади

Более сложной величиной является площадь фигуры. Для ее измерения используют мерки. Эталоном среди мерок являются квадраты.

Площадь квадрата со стороной 1 см равна 1 см². Квадратный дециметр обозначен как дм², а квадратный метр — м².

Области применения единиц измерения могут быть такими:

  1. В см² измеряют маленькие предметы, например фотографии, обложки учебников, листы бумаги.
  2. В дм² можно измерить географическую карту, оконное стекло, картину.
  3. Для измерения пола, квартиры, земельного участка используют м².

Если начертить прямоугольник 3 см длиной и 1 см шириной и разбить на квадраты со стороной 1 см, то в нем поместится 3 квадрата, а значит, его площадь составит 3 см². Если прямоугольник разбит на квадраты, найдем периметр прямоугольника также без затруднений. В данном случае он равен 8 см.

Другой способ посчитать количество квадратов, вмещающихся в фигуру, — это использование палетки. Начертим на кальке квадрат площадью 1 дм², что составляет 100 см². Поместим кальку на фигуру и посчитаем число квадратных сантиметров в одном ряду. После этого выясним количество рядов, а затем перемножим значения. Значит, площадь прямоугольника — это произведение его длины и ширины.

Способы сравнения площадей:

  1. На глаз. Иногда достаточно просто взглянуть на предметы, поскольку в некоторых случаях и невооруженным глазом видно, что одна фигура занимает больше места, как, например, учебник, лежащий на столе рядом с пеналом.
  2. Наложение. Если фигуры совпадают при наложении, их площади равны. Если же одна из них полностью помещается внутри второй, то ее площадь меньше. Места, занимаемые тетрадным листом и страницей из учебника, можно сравнить, наложив их друг на друга.
  3. По количеству мерок. Фигуры при наложении могут и не совпадать, однако иметь одинаковую площадь. Сравнить в этом случае можно, подсчитав количество квадратов, на которые разбита фигура.
  4. Числа. Сравниваются численные значения, измеренные одной и той же меркой, например, в м².

Пример №1: «Швея сшила детское одеяло из квадратных разноцветных лоскутков. Один лоскуток длиной 1 дм, в ряду по 5 штук. Сколько дециметров ленты понадобится швее для обработки краев одеяла, если известна площадь 50 дм²?».

Чтобы решить задачу, нужно ответить на вопрос, как найти длину прямоугольника. Далее найдем периметр прямоугольника, составленного из квадратов. Из задачи ясно, что ширина одеяла — 5 дм, вычисляем длину, разделив 50 на 5, и получаем 10 дм. Теперь найдите периметр прямоугольника со сторонами 5 и 10. P=5+5+10+10=30.

Ответ: 30 (м).

Пример №2: «На раскопках обнаружен участок, где могут находиться древние сокровища. Сколько территории придется исследовать ученым, если известен периметр 18 м и ширина прямоугольника 3 м?».

Определим длину участка, проделав 2 действия. 18-3×2=12. 12:2=6. Искомая территория будет также равна 18 м² (6×3=18).

Ответ: 18 (м²).

Таким образом, зная формулы, вычислить площадь и периметр не составит труда, а приведенные выше примеры помогут попрактиковаться в решении математических задач.

Содержимое:

Вычисление периметра прямоугольника - довольно простая задача. Все, что вам нужно знать, это ширину и длину прямоугольника. Если эти величины не даны, вам необходимо найти их. Эта статья расскажет, как это сделать.

Шаги

1 Стандартный метод

  1. 1 Формула для вычисления периметра. Основная формула для вычисления периметра прямоугольника: P = 2 * (l + w) .
    • Запомните: периметр – это общая длина всех сторон фигуры.
    • В этой формуле P - "периметр", l - длина прямоугольника, w - ширина прямоугольника.
    • У длины всегда большее значение, чем у ширины.
    • Поскольку прямоугольник имеет две равные длины и две равные ширины, измеряется только одна сторона l (длина) и одна сторона w (ширина) (хотя у прямоугольника четыре стороны).
    • Вы также можете записать формулу в виде: P = l + l + w + w
  2. 2 Найдите длину и ширину. В обычной математической задаче длина и ширина прямоугольника, как правило, даны. Если вы ищите периметр прямоугольника в реальной жизни, используйте линейку или рулетку, чтобы найти длину и ширину.
    • Если вы вычисляете периметр прямоугольника в реальной жизни, используйте рулетку или мерную ленту, чтобы найти длину и ширину нужного участка. Если работы проводятся на открытом воздухе, измерьте все стороны, чтобы убедиться, что параллельные стороны действительно совпадают.
    • Например: l = 14 см, w = 8 см
  3. 3 Сложите длину и ширину. Подставьте значения в формулу и сложите их.
    • Обратите внимание, что в соответствии с порядком операций, математические выражения в скобках решаются в первую очередь.
    • Например: P = 2 * (l + w) = 2 * (14 + 8) = 2 * (22)
  4. 4 Умножьте эту сумму на два (согласно формуле).
    • Обратите внимание, что умножив сумму на два, вы учли две другие стороны прямоугольника. Складывая ширину и длину, вы складываете только две стороны фигуры. Поскольку две другие стороны прямоугольника равны двум сложенным, сумма просто умножается на два и таким образом находится общая сумма всех четырех сторон.
    • Полученное число будет периметром прямоугольника.
    • Например: P = 2 * (l + w) = 2 * (14 + 8) = 2 * (22) = 44 см
  5. 5 Альтернативный метод: сложите l + l + w + w . Вместо сложения двух сторон и умножения их на два, можно просто сложить все четыре стороны и найти периметр прямоугольника.
    • Если вам тяжело дается понятие периметра, то данный метод как раз для вас.
    • Например: P = l + l + w + w = 14 + 14 + 8 + 8 = 44 см

2 Вычисление периметра через площадь и одну сторону

  1. 1 Формула для площади прямоугольника. Если вам дана площадь прямоугольника, вы должны знать формулу для ее вычисления, чтобы найти недостающую информацию для вычисления периметра.
    • Запомните: площадь фигуры - это значение общего пространства, которое ограничено сторонами фигуры.
    • Формула для вычисления площади прямоугольника: A = l * w
    • Формула для вычисления периметра прямоугольника: P = 2 * (l + w)
    • В приведенных выше формулах А - "площадь", P - "периметр",l - длина прямоугольника, w - ширина прямоугольника.
  2. 2 Разделите площадь на данную в задаче сторону, чтобы найти другую сторону.
    • Так как для вычисления площади вам нужно умножить длину на ширину, то разделив площадь на ширину, вы получите длину. Аналогично, деление площади на длину даст вам ширину.
    • Например: A = 112 см2, l = 14 см
      • A = l * w
      • 112 = 14 * w
      • 112/14 = w
      • 8 = w
  3. 3 Добавьте длину и ширину. Теперь, когда у вас есть значения длины и ширины, их можно подставить в формулу для вычисления периметра прямоугольника.
    • Первым делом нужно сложить длину и ширину, поскольку данная часть уравнения заключена в скобки.
    • Согласно порядку вычислений, первым выполняется действие, приведенное в скобках.
  4. 4 Умножьте сумму длины и ширины на два. После того как вы сложили длину и ширину прямоугольника, можно найти периметр, умножив полученное число на два. Это необходимо для добавления оставшихся двух сторон прямоугольника.
    • Противоположные стороны прямоугольника равны, именно поэтому сумму длины и ширины нужно умножить на два.
    • Одинакова как длина противоположных сторон, так и ширина.
    • Например: Р = 2 * (14 + 8) = 2 * (22) = 44 см

3 Периметр прямоугольной фигуры

  1. 1 Запишите основную формулу для определения периметра. Периметр – это общая длина всех сторон фигуры.
    • Прямоугольник имеет четыре стороны. Стороны, образующие длину, равны друг другу и стороны, образующие ширину, равны друг другу. Таким образом, периметр является суммой этих четырех сторон.
    • Прямоугольная фигура. Рассмотрим фигуру формы "L". Такая фигура может быть разбита на два прямоугольника. Однако, при вычислении периметра фигуры такое разбиение на два прямоугольника не учитывается. Периметр рассматриваемой фигуры: , где S – стороны фигуры (смотрите рисунок).
    • Каждая “s” – это отдельная сторона сложного прямоугольника.
  2. 2 В обычной математической задаче стороны фигуры, как правило, даны. Если вы ищите периметр прямоугольной фигуры в реальной жизни, используйте линейку или рулетку, чтобы найти ее стороны.
    • Для объяснения введем следующие обозначения: L, W, l1, l2, w1, w2 . Прописные L и W l и w
    • Таким образом, формула Р = S1 + S2 + S3 + S4 + S5 + S6 записывается в виде: (обе формулы, по сути, одинаковы, но используют разные переменные).
    • Переменные “w” и “l” просто заменяют числа.
    • Пример: L = 14 см, W = 10 см, l1 = 5 см, l2 = 9 см, w1 = 4 см, w2 = 6 см.
      • Обратите внимание, что l1 +l2 =L . Аналогично, w 1 + w2 =W .
  3. 3 Сложите стороны.
    • 48 см

4 Периметр прямоугольной фигуры (известны только некоторые стороны)

  1. 1 Проанализируйте данные вам значения сторон. Вы можете найти периметр прямоугольной фигуры, если вам даны по крайней мере одна полная длина или полная ширина и, по крайней мере, три неполные ширины и длины.
    • Для "L"-образной прямоугольной фигуры используется формула P = L + W + l1 + l2 + w1 + w2
    • В приведенной выше формуле: P – это периметр, прописные L и W обозначают полную длину и ширину фигуры. Строчные l и w обозначают неполную длину и ширину фигуры.
    • Пример: L = 14 см, l1 = 5 см, w1 = 4 см, w2 = 6 см; Требуется найти: W, l2.
  2. 2 Используя данные значения сторон, найдите неизвестные стороны. Учтите, что l1 +l2 =L . Аналогично, w 1 + w2 =W .
    • Например: L = l1 + l2; W = w1 + w2
      • L = l1 + l2
      • 14 = 5 + l2
      • 14 – 5 = l2
      • 9 = l2
      • W = w1 + w2
      • W = 4 + 6
      • W = 10
  3. 3 Сложите стороны. Подставьте значения в формулу и вычислите периметр прямоугольной фигуры.
    • P = L + W + l1 + l2 + w1 + w2 = 14 + 10 + 5 + 9 + 4 + 6 = 48 см

Что вам понадобится

  • Карандаш
  • Бумага
  • Калькулятор (опционально)
  • Линейка или рулетка (опционально)