Монотонный график. Промежутки монотонности функции. §1. Возрастание и убывание функций

Монотонная функция – это функция, меняющаяся в одном и том же направлении.

Функция возрастает , если большему значению аргумента соответствует большее значение функции. Говоря иначе, если при возрастании значения x значение y тоже возрастает, то это возрастающая функция.

Функция убывает , если большему значению аргумента соответствует меньшее значение функции. Говоря иначе, если при возрастании значения x значение y убывает, то это убывающая функция.

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Функция постоянна (немонотонна) , если она не убывает и не возрастает.

Теорема (необходимый признак монотонности):

1. Если дифференцируемая функция f(x) в некотором интервале возрастает, то ее производная на этом интервале неотрицательна, т.е .

2. Если дифференцируемая функция f(x) в некотором интервале убывает, то ее производная на этом интервале неположительна, .

3. Если функция не изменяется, то ее производная равна нулю, т.е. .

Теорема (достаточный признак монотонности):

Пусть f(x) непрерывна на интервале (a;b) и имеет производную во всех точках, тогда:

1. Если внутри (a;b) положительна, то f(x) возрастает.

2. Если внутри (a;b) отрицательна, то f(x) убывает.

3. Если , то f(x) постоянна.

Исследование функции на экстремумы.

Экстремум - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума, а если максимум - точкой максимума.

1. Найдите область определения функции и интервалы, на которых функция непрерывна.

2. Найдите производную .

3. Найдите критические точки, т.е. точки в которых производная функции равна нулю или не существует.

4. В каждом из интервалов на которые область определения разбивается критическими точками, определить знак производной и характер изменения функции.

5. Относительно каждой критической точки определить, является ли она точной максимума, минимума или не является точкой экстремума.

Записать результат исследования функции промежутки монотонности и экстремума.

Наибольшее и наименьшее значение функции.

Схема нахождения наибольшего и наименьшего значений функции, непрерывной на отрезке.

1. Найти производную .

2. Найти на данном отрезке критические точки.

3. Вычислить значение функции в критических точках и на концах отрезка.

4. Из вычисленных значений выбрать наименьшее и наибольшее.

Выпуклость и вогнутость функции.

Дуга называется выпуклой, если она пересекается с любой своей секущей не более, чем в двух точках.

Линии, образуемые выпуклостью вверх, называются выпуклыми, а образуемые выпуклостью вниз - вогнутыми.

Геометрически ясно, что выпуклая дуга лежит под любой своей касательной, а вогнутая дуга – над касательной.

Точки перегиба функции.

Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой.

В точке перегиба касательная пересекает линию, в окрестности этой точки линия лежит по обе стороны от касательной.

Интервалу убывания первой производной соответствует участок выпуклости графика функции, а интервалу возрастания – участок вогнутости.

Теорема (о точках перегиба):

Если вторая производная всюду в интервале отрицательна, то дуга линии y = f(x), соответствующая этому интервалу, выпуклая. Если вторая производная всюду в интервале положительна, то дуга линии y = f(x), соответствующая этому интервалу, вогнутая.

Необходимый признак точки перегиба:

Если – абсцисса точки перегиба, то либо , либо не существует.

Достаточный признак точки перегиба:

Точка есть точка перегиба линии y = f(x), если , а ;

При слева от нее лежит участок выпуклости, справа – участок вогнутости, а при слева лежит участок вогнутости, а справа – выпуклости.

Асимптоты.

Определение.

Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Виды асимптот:

1. Прямая называется вертикальной асимптотой графика функции y=f(x), если хотя бы одна из прямых значений или равно или .

Числовое множество X считается симметричным относительно нуля, если для любого x ЄX значение -х также принадлежит множеству X .

Функция y = f (х X , считается четной X x ЄX , f (х ) = f (-х ).

У четной функции график симметричен относительно оси Оу.

Функция y = f (х ), которая задана на множестве X , считается нечетной , если выполняются следующие условия: а) множество X симметрично относительно нуля; б) для любого x ЄX , f (х ) = -f (-х ).

У нечетной функции график симметричен относительно начала координат.

Функция у = f (x ), x ЄX , называется периодической на X , если найдется число Т (Т ≠ 0) (период функции), что выполняются следующие условия:

  • х - Т и х + Т из множества X для любого х ЄX ;
  • для любого х ЄX , f (х + T ) = f (х - T ) = f (х).

В случае, когда Т - это период функции, то любое число вида , где m ЄZ , m ≠ 0, это также период этой функции. Наименьший из положительных периодов данной функции (если он существует) называется ее главным периодом.

В случае, когда Т - основной период функции, то для построения ее графика можно построить часть графика на любом из промежутков области определения длины Т , а затем сделать параллельный перенос этого участка графика вдоль оси Ох на ±Т , ±2T , ....

Функция y = f (х ), ограниченна снизу на множестве Х А , что для любого х ЄX , А f (х ). График функции, который ограничен снизу на множестве X , полностью располагается выше прямой у = А (это горизонтальная прямая).

Функция у = f (x ), ограниченна сверху на множестве Х (она при этом должна быть определенной на этом множестве), если есть число В , что для любого х ЄX , f (х ) ≤ В . График функции, который ограничен сверху на множестве X, полностью располагается ниже прямой у = В (это горизонтальная линия).

Функция, считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если она ограничена на этом множестве сверху и снизу, т. е. существуют такие числа А и В , что для любого х ЄX выполняются неравенства A f (x ) ≤ B . График функции, которая ограничена на множестве X , полностью располагается в промежутке между прямыми у = А и у = В (это горизонтальные прямые).

Функция у = f (х ), считается ограниченной на множестве Х (она при этом должна быть определенной на этом множестве), если найдется число С > 0, что для любого x ЄX , │f (х )│≤ С .

Функция у = f (х ), х ЄX , называется возрастающей (неубывающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) < f (х 2) (f (х 1) ≤ f (х 2)). Или функция у называется возрастающей на множестве К , если большему значению аргумента из этого множества соответствует большее значение функции.

Функция у = f (х ), х ЄX, называется убывающей (невозрастающей) на подмножестве М СX , когда для каждых х 1 и х 2 из М таких, что х 1 < х 2 , справедливо f (х 1) > f (х 2) (f (х 1) ≥ f (х 2)). Или функция у называется убывающей на множестве К , если большему значению аргумента из этого множества соответствует меньшее значение функции.

Функция у = f (x ), х ЄX , называется монотонной на подмножестве М СX , если она является убывающей (невозрастающей) или возрастающей (неубывающей) на М .

Если функция у = f (х ), х ЄX , является убывающей или возрастающей на подмножестве М СX , то такая функция называется строго монотонной на множестве М .

Число М называют наибольшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента из множества К значения функции у не больше числа М .

Число m называют наименьшим значением функции у на множестве К , если это число является значением функции при определенном значении х 0 аргумента из множества К , а при других значениях аргумента х из множества К значения функции у не меньше числа m .

Основные свойства функции , с которых лучше начинать ее изучение и исследование это область ее определения и значения. Следует запомнить, как изображаются графики элементарных функций. Только потом можно переходить к построению более сложных графиков. Тема "Функции" имеет широкие приложения в экономике и других областях знания. Функции изучают на протяжении всего курса математики и продолжают изучать в высших учебных заведениях . Там функции исследуются при помощи первой и второй производных.

Которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Определения

Пусть дана функция Тогда

. . . .

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминология

Иногда возрастающие функции называют неубыва́ющими , а убывающие функции невозраста́ющими . Строго возрастающие функции тогда зовут просто возрастающими, а строго убывающие просто убывающими.

Свойства монотонных функций

Условия монотонности функции

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль . Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место

Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:

Примеры

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Монотонная функция" в других словарях:

    Монотонная функция - — функция f(x), которая может быть либо возрастающей на некотором промежутке (то есть, чем больше любое значение аргумента на этом промежутке, тем больше значение функции), либо убывающей (в противоположном случае).… …

    Функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Большой Энциклопедический словарь

    - (monotonie function) Функция, в которой по мере роста значения аргумента значение функции всегда изменяется в том же направлении. Следовательно, если у=f(x), то либо dy/dx > 0 для всех значений х, и в этом случае у является возрастающей… … Экономический словарь

    - (от греч. monótonos однотонный) функция, приращения которой Δf(x) = f(x’) f(x) при Δx = x’ x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. это функции, меняющиеся в… … Большая советская энциклопедия

    Функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает). * * * МОНОТОННАЯ ФУНКЦИЯ МОНОТОННАЯ ФУНКЦИЯ, функция, которая при возрастании аргумента либо всегда возрастает (или… … Энциклопедический словарь

    Функция одного переменного, определенная на нек ром подмножестве действительных чисел, приращение к рой при не меняет знака, т. е. либо всегда неотрицательно, либо всегда неположительно. Если строго больше (меньше) нуля, когда то М. ф. наз.… … Математическая энциклопедия

    Функция, к рая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Естествознание. Энциклопедический словарь

    Это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств.… … Википедия

    функция - Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

    Функция - 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

Опр.: Функция называется возрастающей на некотором промежутке, если в этом промежутке каждому большему значению аргумента соответствует большее значение функции.

Опр.: Функция называется убывающей на некотором промежутке, если в этом промежутке каждому большему значению аргумента соответствует меньшее значение функции.

Как возрастающие. так и убывающие функции называются монотонными.

Если функция не является монотонной, то область ее определения можно разбить на конечное число промежутков монотонности, которые могут чередоваться с промежутками постоянства функции.

Монотонность функции y = f(x) характеризуется знаком ее первой производной f ¤ (x), а именно, если в некотором промежутке f ¤ (x) > 0, то функция возрастает в этом промежутке, если в некотором промежутке f ¤ (x) < 0, то функция убывает в этом промежутке.

Отыскание промежутков монотонности функции y = f(x) сводится к нахождению промежутков знакопостоянства ее первой производной f ¤ (x).

Отсюда получаем правило для нахождения промежутков монотонности функции y = f(x)

1. Найти нули и точки разрыва f ¤ (x).

2. Определить методом проб знак f ¤ (x) в промежутках, на которые полученные в п.1 точки делят область определения функции f(x).

Пример:

Найти промежутки монотонности функции у = - х 2 + 10х + 7

Найдем f ¤ (x). y¢ = -2х +10

Точка, в которой y¢ = 0 одна и она делит область определения функции на следующие промежутки: (– ∞,5) И (5 ,+ ∞), в каждом из которых y¢ сохраняет постоянный знак. Подставим в эти промежутки конкретные значения функции и определим знак y¢ на указанных промежутках, тогда:

на промежутке (– ∞,5] y¢ > 0,

на промежутке функция возрастает, а на промежутке И (3 ,+ ∞), в каждом из которых y¢ сохраняет постоянный знак. Подставим в эти промежутки конкретные значения функции и определим знак y¢ на указанных промежутках, тогда.

Моното́нная фу́нкция - это функция, приращение которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Пусть дана функция Тогда

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Определение экстремума

Функция y = f(x) называется возрастающей (убывающей) в некотором интервале, если при x1< x2 выполняется неравенство (f(x1) < f(x2) (f(x1) > f(x2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f "(x) > 0

(f " (x) < 0).

Точка xо называется точкой локального максимума (минимума) функции f(x), если существует окрестность точки xо, для всех точек которой верно неравенство f(x) ≤ f(xо) (f(x) ≥ f(xо)).

Точки максимума и минимума называются точками экстремума, а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума. Если точка xо является точкой экстремума функции f(x), то либо f "(xо) = 0, либо f (xо) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть xо - критическая точка. Если f " (x) при переходе через точку xо меняет знак плюс на минус, то в точке xо функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке xо экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки xо и вторую производную в самой точке xо. Если f " (xо) = 0,>0 (<0), то точка xоявляется точкой локального минимума (максимума) функции f(x). Если же=0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

7. Интервалы выпуклости, вогнутости функции .Точки перегиба.

График функции y =f(x) называется выпуклым на интервале (a; b) , если он расположен ниже любой своей касательной на этом интервале.

График функции y =f(x) называется вогнутым на интервале (a; b) , если он расположен выше любой своей касательной на этом интервале.

На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c) .

Примеры.

Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым.

Теорема . Пусть y =f(x) дифференцируема на (a; b) . Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ""(x ) < 0, то график функции на этом интервале выпуклый, если же f ""(x ) > 0 – вогнутый.

Доказательство . Предположим для определенности, что f ""(x ) < 0 и докажем, что график функции будет выпуклым.

Возьмем на графике функции y = f(x) произвольную точку M 0 с абсциссой x 0  (a ; b ) и проведем через точку M 0 касательную. Ее уравнение . Мы должны показать, что график функции на (a; b) лежит ниже этой касательной, т.е. при одном и том же значении x ордината кривой y = f(x) будет меньше ордината касательной.

Точка перегиба функции

У этого термина существуют и другие значения, см. Точка перегиба .

Точка перегиба функции внутренняя точкаобласти определения , такая чтонепрерывна в этой точке, существует конечная или определенного знака бесконечная производная в этой точке, иявляется одновременно концом интервала строгой выпуклости вверх и началом интервала строгой выпуклости вниз, или наоборот.

Неофициальное

В этом случае точка являетсяточкой перегиба графика функции, то есть график функции в точке«перегибается» черезкасательную к нему в этой точке: при касательная лежит под графиком, а при- над графиком(или наоборот)

Условия существования

Необходимое условие существования точки перегиба: если функция f(x), дважды дифференцируемая в некоторой окрестности точки , имеет вточку перегиба, то.

Достаточное условие существования точки перегиба: если функция в некоторой окрестности точкираз непрерывно дифференцируема, причемнечётно и, ипри, а, то функцияимеет вточку перегиба.