Как решать простые неравенства квадратные x2. Решение квадратных неравенств методом интервалов. Что такое квадратное неравенство


В этой статье собран материал, покрывающий тему «решение квадратных неравенств ». Сначала показано, что представляют собой квадратные неравенства с одной переменной, дан их общий вид. А дальше детально разобрано как решать квадратные неравенства. Показаны основные подходы к решению: графический способ, метод интервалов и путем выделение квадрата двучлена в левой части неравенства. Приведены решения характерных примеров.

Навигация по странице.

Что такое квадратное неравенство?

Естественно, прежде чем говорить о решении квадратных неравенств, надо отчетливо понимать, что такое квадратное неравенство. Иными словами, нужно по виду записи уметь отличать квадратные неравенства от неравенств других видов.

Определение.

Квадратное неравенство – это неравенство вида a·x 2 +b·x+c<0 (вместо знака > может быть любой другой знак неравенства ≤, >, ≥), где a , b и c – некоторые числа, причем a≠0 , а x – переменная (переменная может быть обозначена и любой другой буквой).

Сразу дадим еще одно название квадратных неравенств – неравенства второй степени . Это название объясняется тем, что в левой части неравенств a·x 2 +b·x+c<0 находится второй степени - квадратный трехчлен. Термин «неравенства второй степени» используется в учебниках алгебры Ю. Н. Макарычева, а Мордкович А. Г. придерживается названия «квадратные неравенства».

Также иногда можно слышать, что квадратные неравенства называют квадратичными неравенствами. Это не совсем корректно: определение «квадратичные» относится к функциям, заданным уравнениями вида y=a·x 2 +b·x+c . Итак, есть квадратные неравенства и квадратичные функции , но не квадратичные неравенства.

Покажем несколько примеров квадратных неравенств: 5·x 2 −3·x+1>0 , здесь a=5 , b=−3 и c=1 ; −2,2·z 2 −0,5·z−11≤0 , коэффициенты этого квадратного неравенства есть a=−2,2 , b=−0,5 и c=−11 ; , в этом случае .

Обратите внимание, что в определении квадратного неравенства коэффициент a при x 2 считается отличным от нуля. Это и понятно, равенство коэффициента a нулю фактически «уберет» квадрат, и мы будем иметь дело с линейным неравенством вида b·x+c>0 без квадрата переменной. А вот коэффициенты b и c могут быть равными нулю, причем как по отдельности, так и одновременно. Вот примеры таких квадратных неравенств: x 2 −5≥0 , здесь коэффициент b при переменной x равен нулю; −3·x 2 −0,6·x<0 , здесь c=0 ; наконец, в квадратном неравенстве вида 5·z 2 >0 и b , и c равны нулю.

Как решать квадратные неравенства?

Теперь можно озадачиться вопросом как решать квадратные неравенства. В основном для решения используются три основных метода:

  • графический способ (или, как у А. Г. Мордковича, функционально-графический),
  • метод интервалов,
  • и решение квадратных неравенств через выделение квадрата двучлена в левой части.

Графическим способом

Сразу оговоримся, что метод решения квадратных неравенств, к рассмотрению которого мы приступаем, в школьных учебниках алгебры не называют графическим. Однако по сути это он и есть. Более того, первое знакомство с графическим способом решения неравенств обычно и начинается тогда, когда встает вопрос, как решать квадратные неравенства.

Графический способ решения квадратных неравенств a·x 2 +b·x+c<0 (≤, >, ≥) заключается в анализе графика квадратичной функции y=a·x 2 +b·x+c для нахождения промежутков, в которых указанная функция принимает отрицательные, положительные, неположительные или неотрицательные значения. Эти промежутки и составляют решения квадратных неравенств a·x 2 +b·x+c<0 , a·x 2 +b·x+c>0 , a·x 2 +b·x+c≤0 и a·x 2 +b·x+c≥0 соответственно.

Методом интервалов

Для решения квадратных неравенств с одной переменной помимо графического метода достаточно удобен метод интервалов , который сам по себе очень универсален, и подходит для решения различных неравенств, а не только квадратных. Его теоретическая сторона лежит за пределами курса алгебры 8, 9 классов, когда учатся решать квадратные неравенства. Поэтому здесь мы не будем вдаваться в теоретическое обоснование метода интервалов, а сосредоточимся на том, как с его помощью решаются именно квадратные неравенства.

Суть метода интервалов, по отношению к решению квадратных неравенств a·x 2 +b·x+c<0 (≤, >, ≥), состоит в определении знаков, которые имеют значения квадратного трехчлена a·x 2 +b·x+c на промежутках, на которые разбивается координатная ось нулями этого трехчлена (при их наличии). Промежутки со знаками минус составляют решения квадратного неравенства a·x 2 +b·x+c<0 , со знаками плюс – неравенства a·x 2 +b·x+c>0 , а при решении нестрогих неравенств к указанным промежуткам добавляются точки, отвечающие нулям трехчлена.

Познакомиться со всеми деталями этого метода, его алгоритмом, правилами расстановки знаков на промежутках и рассмотреть готовые решения типовых примеров с приведенными иллюстрациями Вы можете, обратившись к материалу статьи решение квадратных неравенств методом интервалов .

Путем выделения квадрата двучлена

Кроме графического метода и метода интервалов существуют и другие подходы, позволяющие решать квадратные неравенства. И мы подошли к одному из них, в основе которого лежит выделение квадрата двучлена в левой части квадратного неравенства.

Принцип этого способа решения квадратных неравенств состоит в выполнении равносильных преобразований неравенства , позволяющих перейти к решению равносильного неравенства вида (x−p) 2 , ≥), где p и q – некоторые числа.

А как осуществляется переход к неравенству (x−p) 2 , ≥) и как его решить разъясняет материал статьи решение квадратных неравенств путем выделения квадрата двучлена . Там же представлены примеры решения квадратных неравенств этим способом и даны необходимые графические иллюстрации.

Неравенства, сводящиеся к квадратным

На практике очень часто приходится сталкиваться с неравенствами, приводящимися с помощью равносильных преобразований к квадратным неравенствам вида a·x 2 +b·x+c<0 (знаки, естественно, могут быть и другими). Их можно назвать неравенствами, сводящимися к квадратным неравенствам.

Начнем с примеров самых простых неравенств, которые сводятся к квадратным. Иногда, чтобы перейти к квадратному неравенству, достаточно переставить в данном неравенстве слагаемые или перенести их из одной части в другую. Например, если перенести все слагаемые из правой части неравенства 5≤2·x−3·x 2 в левую, то получим квадратное неравенство в оговоренном выше виде 3·x 2 −2·x+5≤0 . Еще пример: переставив в левой части неравенства 5+0,6·x 2 −x<0 слагаемые по убыванию степени переменной, придем к равносильному квадратному неравенству в привычной форме 0,6·x 2 −x+5<0 .

В школе на уроках алгебры, когда учатся решать квадратные неравенства, одновременно разбираются и с решением рациональных неравенств , сводящихся к квадратным. Их решение предполагает перенос всех слагаемых в левую часть с последующим преобразованием образовавшегося там выражения к виду a·x 2 +b·x+c путем выполнения . Рассмотрим пример.

Пример.

Найдите множество решений неравенства 3·(x−1)·(x+1)<(x−2) 2 +x 2 +5 .иррациональное неравенство равносильно квадратному неравенству x 2 −6·x−9<0 , а логарифмическое неравенство – неравенству x 2 +x−2≥0 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

Квадратное неравенство – это неравенство, в котором переменная возводится в квадрат ( x 2 {\displaystyle x^{2}} ) и имеет два корня. График такого неравенства представляет собой параболу и пересекает ось Х в двух точках. Решение неравенства подразумевает нахождение таких значений x {\displaystyle x} , при которых неравенство верно. Корни неравенства можно записать в алгебраической форме, а также отобразить их на числовой прямой или координатной плоскости.

Шаги

Часть 1

Разложение неравенства на множители

    Запишите неравенство в стандартной форме. Стандартная форма квадратного неравенства представляет собой следующий трехчлен: a x 2 + b x + c < 0 {\displaystyle ax^{2}+bx+c<0} , где a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} – коэффициенты, и a ≠ 0 {\displaystyle a\neq 0} .

    Найдите два одночлена, при перемножении которых получится первый член неравенства. Чтобы решить неравенство, нужно разложить его на два бинома (двучлена), при перемножении которых получится исходное неравенство, записанное в стандартной форме. Бином – это выражение с двумя одночленами. Помните, что биномы перемножаются по определенному правилу . Для начала найдите два одночлена, каждый из которых является первым одночленом соответствующего бинома.

    Найдите два числа, при перемножении которых получится третий член неравенства, записанного в стандартной форме. При этом сумма таких чисел должна быть равна коэффициенту при втором члене неравенства. Скорее всего, здесь числа нужно искать методом проб и ошибок, чтобы они удовлетворяли сразу двум описанным условиям. Обратите внимание на знак («плюс» или «минус»), который стоит перед третьим членом неравенства.

    Часть 2

    Нахождение корней неравенства
    1. Определите, имеют ли оба бинома одинаковые знаки. Если произведение биномов больше нуля, то оба бинома будут либо отрицательными (меньше 0), либо положительными (больше 0), потому что минус на минус дает плюс, и плюс на плюс тоже дает плюс.

      Определите, имеют ли оба бинома разные (противоположные) знаки. Если произведение биномов меньше нуля, то один бином будет отрицательным (меньше 0), а второй будет положительным (больше 0), потому что минус на плюс дает минус.

      Запишите варианты из двух неравенств, чтобы найти корни исходного неравенства. Для этого каждый бином превратите в неравенство, учитывая тот факт, что оба бинома имеют одинаковые или разные знаки.

      Решите два неравенства первого варианта. x {\displaystyle x}

      • Например, два неравенства первого варианта: x + 7 < 0 {\displaystyle x+7<0} И x − 3 > 0 {\displaystyle x-3>0}
      • Таким образом, первая пара корней исходного неравенства: x < − 7 {\displaystyle x<-7} и x > 3 {\displaystyle x>3}
    2. Проверьте действительность первой пары корней. Для этого найдите значения x {\displaystyle x}

      Решите два неравенства второго варианта. Для этого изолируйте переменную x {\displaystyle x} в каждом неравенстве. Помните, что если умножить или разделить обе стороны неравенства на отрицательное число, знак неравенства меняется на противоположный.

      • Например, два неравенства второго варианта: x + 7 > 0 {\displaystyle x+7>0} И x − 3 < 0 {\displaystyle x-3<0}
      • Таким образом, вторая пара корней исходного неравенства: x > − 7 {\displaystyle x>-7} и x < 3 {\displaystyle x<3}
    3. Проверьте действительность второй пары корней. Для этого найдите значения x {\displaystyle x} , удовлетворяющие обоим найденным корням. Если такие значения существуют, корни действительны; в противном случае корнями можно пренебречь.

    Часть 3

    Отображение корней неравенства на числовой прямой

      Нарисуйте числовую прямую. Сделайте это так, как требуется (в задаче или преподавателем). Если конкретных требований нет, под числовой прямой напишите числа, соответствующие найденным ранее корням (значениям x {\displaystyle x} ). Также можно написать несколько чисел, которые больше или меньше найденных значений; так вам будет проще работать с числовой прямой.

      На числовой прямой нарисуйте кружки, обозначающие найденные значения x {\displaystyle x} . Кружки рисуйте непосредственно над числами. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) найденного значения, кружок не закрашивается. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) найденному значению, кружок закрашивается, потому что множество решений включает это значение.

      На числовой прямой заштрихуйте область, определяющую множество решений. Если x {\displaystyle x} больше найденного числа, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если x {\displaystyle x} меньше найденного числа, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного. Если множество решений лежит между двумя числами, заштрихуйте область между этими числами.

    Часть 4

    Отображение корней неравенства на координатной плоскости

      На координатную плоскость нанесите точки пересечения с осью Х. Найденные корни являются координатами «х» точек пересечения графика с осью Х.

      Найдите ось симметрии. Ось симметрии – это прямая, которая проходит через вершину параболы и делит ее на две зеркально симметричные ветви. Чтобы найти ось симметрии, воспользуйтесь формулой x = − b 2 a {\displaystyle x={\frac {-b}{2a}}} , где a {\displaystyle a} и b {\displaystyle b} – это коэффициенты в исходном квадратном неравенстве.

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

В данном разделе мы собрали информацию о квадратных неравенствах и основных подходах к их решению. Закрепим материал разбором примеров.

Что представляет собой квадратное неравенство

Давайте посмотрим, как по виду записи различать неравенства различных видов и выделять среди них квадратные.

Определение 1

Квадратное неравенство – это такое неравенство, которое имеет вид a · x 2 + b · x + c < 0 , где a , b и c – некоторые числа, причем a не равно нулю. x – это переменная, а на месте знака < может стоять любой другой знак неравенства.

Вторым названием квадратных уравнений является название «неравенства второй степени». Объяснить наличие второго названия можно следующим образом. В левой части неравенства находится многочлен второй степени – квадратный трехчлен. Применение к квадратным неравенствам термина «квадратичные неравенства» некорректен, так как квадратичными являются функции, которые задаются уравнениями вида y = a · x 2 + b · x + c .

Приведем пример квадратного неравенства:

Пример 1

Возьмем 5 · x 2 − 3 · x + 1 > 0 . В этом случае a = 5 , b = − 3 и c = 1 .

Или вот такое неравенство:

Пример 2

− 2 , 2 · z 2 − 0 , 5 · z − 11 ≤ 0 , где a = − 2 , 2 , b = − 0 , 5 и c = − 11 .

Покажем несколько примеров квадратных неравенств:

Пример 3

Особое внимание нужно обратить на тот факт, что коэффициент при x 2 считается неравным нулю. Объясняется это тем, что иначе мы получим линейное неравенство вида b · x + c > 0 , так как квадратная переменная при умножении на ноль сама станет равной нулю. При этом, коэффициенты b и c могут быть равны нулю как вместе, так и по отдельности.

Пример 4

Пример такого неравенства x 2 − 5 ≥ 0 .

Способы решения квадратных неравенств

Основным метода три:

Определение 2

  • графический;
  • метод интервалов;
  • через выделение квадрата двучлена в левой части.

Графический метод

Метод предполагает проведение построения и анализа графика квадратичной функции y = a · x 2 + b · x + c для квадратных неравенств a · x 2 + b · x + c < 0 (≤ , > , ≥) . Решением квадратного неравенства являются промежутки или интервалы, на которых указанная функция принимает положительные и отрицательные значения.

Метод интервалов

Решить квадратное неравенство с одной переменной можно методом интервалов. Метод применим для решения любого вида неравенств, не только квадратных. Суть метода в том, чтобы определить знаки промежутков, на которые разбивается ось координат нулями трехчлена a · x 2 + b · x + c при их наличии.

Для неравенства a · x 2 + b · x + c < 0 решениями являются промежутки со знаком минус, для неравенства a · x 2 + b · x + c > 0 , промежутки со знаком плюс. Если мы имеем дело с нестрогими неравенствами, то решением становится интервал, который включает точки, которые соответствуют нулям трехчлена.

Выделение квадрата двучлена

Принцип выделения квадрата двучлена в левой части квадратного неравенства состоит в выполнении равносильных преобразований, которые позволяют перейти к решению равносильного неравенства вида (x − p) 2 < q (≤ , > , ≥) , где p и q – некоторые числа.

К квадратным неравенствам с помощью равносильных преобразований можно прийти от неравенств других видов. Сделать это можно разными способами. Например, перестановкой в данном неравенства слагаемых или переносом слагаемых из одной части в другую.

Приведем пример. Рассмотрим равносильное преобразование неравенства 5 ≤ 2 · x − 3 · x 2 . Если мы перенесем все слагаемые из правой части в левую, то получим квадратное неравенство вида 3 · x 2 − 2 · x + 5 ≤ 0 .

Пример 5

Необходимо найти множество решений неравенства 3 · (x − 1) · (x + 1) < (x − 2) 2 + x 2 + 5 .

Решение

Для решения задачи используем формулы сокращенного умножения. Для этого соберем все слагаемые в левой части неравенства, раскроем скобки и приведем подобные слагаемые:

3 · (x − 1) · (x + 1) − (x − 2) 2 − x 2 − 5 < 0 , 3 · (x 2 − 1) − (x 2 − 4 · x + 4) − x 2 − 5 < 0 , 3 · x 2 − 3 − x 2 + 4 · x − 4 − x 2 − 5 < 0 , x 2 + 4 · x − 12 < 0 .

Мы получили равносильное квадратное неравенство, которое можно решить графическим способом, определив дискриминант и точки пересечения.

D ’ = 2 2 − 1 · (− 12) = 16 , x 1 = − 6 , x 2 = 2

Построив график, мы можем увидеть, что множеством решений является интервал (− 6 , 2) .

Ответ: (− 6 , 2) .

Примером неравенств, которые часто сводятся к квадратным, могут служить иррациональные и логарифмические неравенства. Так, например, неравенство 2 · x 2 + 5 < x 2 + 6 · x + 14

равносильно квадратному неравенству x 2 − 6 · x − 9 < 0 , а логарифмическое неравенство log 3 (x 2 + x + 7) ≥ 2 – неравенству x 2 + x − 2 ≥ 0 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Чтобы разобраться, как решать квадратные уравнения, нам потребуется разобраться, что же такое квадратичная функция, и какими свойствами она обладает.

Наверняка ты задавался вопросом, зачем вообще нужна квадратичная функция? Где применим её график (парабола)? Да стоит только оглядеться, и ты заметишь, что ежедневно в повседневной жизни сталкиваешься с ней. Замечал, как на физкультуре летит брошенный мяч? «По дуге»? Самым верным ответом будет «по параболе»! А по какой траектории движется струя в фонтане? Да, тоже по параболе! А как летит пуля или снаряд? Все верно, тоже по параболе! Таким образом, зная свойства квадратичной функции, можно будет решать многие практические задачи. К примеру, под каким углом необходимо кинуть мяч, чтобы обеспечить наибольшую дальность полёта? Или, где окажется снаряд, если запустить его под определённым углом? и т.д.

Квадратичная функция

Итак, давай разбираться.

К примеру, . Чему здесь равны, и? Ну, конечно, и!

А что, если, т.е. меньше нуля? Ну конечно, мы «грустим», а, значит, ветви будут направлены вниз! Давай посмотрим на графике.

На этом рисунке изображён график функции. Так как, т.е. меньше нуля, ветви параболы направлены вниз. Кроме того, ты, наверное, уже заметил, что ветви этой параболы пересекают ось, а значит, уравнение имеет 2 корня, а функция принимает как положительные и отрицательные значения!

В самом начале, когда мы давали определение квадратичной функции, было сказано, что и - некоторые числа. А могут ли они быть равны нулю? Ну конечно, могут! Даже открою еще больший секрет (который и не секрет вовсе, но упомянуть о нем стоит): на эти числа (и) вообще никакие ограничения не накладываются!

Ну что, давай посмотрим, что будет с графиками, если и равны нулю.

Как видно, графики рассматриваемых функций (и) сместились так, что их вершины находятся теперь в точке с координатами, то есть на пересечении осей и, на направлении ветвей это никак не отразилось. Таким образом, можно сделать вывод, что и отвечают за «передвижения» графика параболы по системе координат.

График функции касается оси в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения больше либо равные нулю.

Придерживаемся той же логики с графиком функции. Он касается оси x в точке. Значит, уравнение имеет один корень. Таким образом, функция принимает значения меньше либо равные нулю, то есть.

Таким образом, чтобы определить знак выражения, первое, что необходимо сделать - это найти корни уравнения. Это нам очень пригодится.

Квадратное неравенство

Квадратное неравенство - это неравенство, состоящее из одной квадратичной функции. Таким образом, все квадратные неравенства сводятся к следующим четырём видам:

При решении таких неравенств нам пригодятся умения определять, где квадратичная функция больше, меньше, либо равна нулю. То есть:

  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений, при котором парабола лежит выше оси.
  • если перед нами неравенство вида, то фактически задача сводится к тому, чтобы определить числовой промежуток значений x, при котором парабола лежит ниже оси.

Если неравенства нестрогие (и), то корни (координаты пересечений параболы с осью) включаются в искомый числовой промежуток, при строгих неравенствах - исключаются.

Это все достаточно формализовано, однако не надо отчаиваться и пугаться! Сейчас разберём примеры, и все станет на свои места.

При решении квадратных неравенств будем придерживаться приведённого алгоритма, и нас ждёт неизбежный успех!

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства «=»).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там, где парабола выше оси, ставим « », а там, где ниже - « ».
5) Выписываем интервал(ы), соответствующий « » или « », в зависимости от знака неравенства. Если неравенство нестрогое , корни входят в интервал, если строгое - не входят.

Разобрался? Тогда вперёд закреплять!

Ну что, получилось? Если возникли затруднения, то разбирайся в решениях.

Решение:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство нестрогое, поэтому корни включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». Неравенство строгое, поэтому корни не включаются в интервалы:

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

данное уравнение имеет один корень

Схематично отметим полученные корни на оси и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает неотрицательные значения. Так как неравенство нестрогое, то ответом будет.

Запишем соответствующее квадратное уравнение:

Найдём корни данного квадратного уравнения:

Схематично нарисуем график параболы и расставим знаки:

Выпишем интервалы, соответствующие знаку « », так как знак неравенства « ». При любом функция принимает положительные значения, следовательно, решением неравенства будет интервал:

КВАДРАТНЫЕ НЕРАВЕНСТВА. СРЕДНИЙ УРОВЕНЬ

Квадратичная функция.

Прежде чем говорить о теме «квадратные неравенства», вспомним что такое квадратичная функция и что из себя представляет её график.

Квадратичная функция - это функция вида,

Другими словами, это многочлен второй степени .

График квадратичной функции - парабола (помнишь, что это такое?). Её ветви направлены вверх, если "a) функция принимает только положительные значения при всех, а во втором () - только отрицательные:

В случае, когда у уравнения () ровно один корень (например, если дискриминант равен нулю), это значит, что график касается оси:

Тогда, аналогично предыдущему случаю, при функция неотрицательна при всех, а при - неположительна.

Так вот, мы ведь недавно уже научились определять, где квадратичная функция больше нуля, а где - меньше:

Если квадратное неравенство нестрогое , то корни входят в числовой промежуток, если строгое - не входят.

Если корень только один, - ничего страшного, будет везде один и тот же знак. Если корней нет, всё зависит только от коэффициента: если, то всё выражение больше 0, и наоборот.

Примеры (реши самостоятельно):

Ответы:

Корней нет, поэтому всё выражение в левой части принимает знак старшего коэффициента: при всех. А значит, решений неравенства нет.

Если квадратичная функция в левой части «неполная» - тем проще находить корни:

КВАДРАТНЫЕ НЕРАВЕНСТВА. КОРОТКО О ГЛАВНОМ

Квадратичная функция - это функция вида: ,

График квадратичной функции - парабола. Её ветви направлены вверх, если, и вниз, если:

  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен больше нуля, то это числовой промежуток, где парабола лежит выше оси.
  • Если требуется найти числовой промежуток, на котором квадратный трёхчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси.

Виды квадратных неравенств:

Все квадратные неравенства сводятся к следующим четырём видам:

Алгоритм решения:

Алгоритм Пример:
1) Запишем соответствующее неравенству квадратное уравнение (просто меняем знак неравенства на знак равенства « »).
2) Найдём корни этого уравнения.
3) Отметим корни на оси и схематично покажем ориентацию ветвей параболы («вверх» или «вниз»)
4) Расставим на оси знаки, соответствующие знаку квадратичной функции: там где парабола выше оси, ставим « », а там где ниже - « ».
5) Выписываем интервал(ы), соответствующий(ие) « » или « », в зависимости от знака неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое - не входят.

Стать учеником YouClever,

Подготовиться к ОГЭ или ЕГЭ по математике,

А также получить доступ к учебнику YouClever без ограничений...