Комбинаторика примеры. Элементы комбинаторики. каждый ученик по три задачи остаётся

Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений »? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый : сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого : 6 комбинаций или 6 перестановок .

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Пожалуйста, откройте справочный материал (методичку удобно распечатать) и в пункте № 2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить способами.

Вопрос второй : сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний :

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей , уже кое о чём догадались. Но о смысле знака «плюс» позже.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий : сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

Рассмотрим ту же студенческую группу, которая пошла на танцы. Сколькими способами можно составить пару из юноши и девушки?

Способами можно выбрать 1 юношу;
способами можно выбрать 1 девушку.

Таким образом, одного юношу и одну девушку можно выбрать: способами.

Когда из каждого множества выбирается по 1 объекту, то справедлив следующий принцип подсчёта комбинаций: «каждый объект из одного множества может составить пару с каждым объектом другого множества».

То есть, Олег может пригласить на танец любую из 13 девушек, Евгений – тоже любую из тринадцати, и аналогичный выбор есть у остальных молодых людей. Итого: возможных пар.

Следует отметить, что в данном примере не имеет значения «история» образования пары; однако если принять во внимание инициативу, то количество комбинаций нужно удвоить, поскольку каждая из 13 девушек тоже может пригласить на танец любого юношу. Всё зависит от условия той или иной задачи!

Похожий принцип справедлив и для более сложных комбинаций, например: сколькими способами можно выбрать двух юношей и двух девушек для участия в сценке КВН?

Союз И недвусмысленно намекает, что комбинации необходимо перемножить:

Возможных групп артистов.

Иными словами, каждая пара юношей (45 уникальных пар) может выступать с любой парой девушек (78 уникальных пар). А если рассмотреть распределение ролей между участниками, то комбинаций будет ещё больше. …Очень хочется, но всё-таки воздержусь от продолжения, чтобы не привить вам отвращение к студенческой жизни =).

Правило умножения комбинаций распространяется и на бОльшее количество множителей:

Задача 8

Сколько существует трёхзначных чисел, которые делятся на 5?

Решение : для наглядности обозначим данное число тремя звёздочками: ***

В разряд сотен можно записать любую из цифр (1, 2, 3, 4, 5, 6, 7, 8 или 9). Ноль не годится, так как в этом случае число перестаёт быть трёхзначным.

А вот в разряд десятков («посерединке») можно выбрать любую из 10 цифр: .

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует : трёхзначных чисел, которые делятся на 5.

При этом произведение расшифровывается так: «9 способами можно выбрать цифру в разряд сотен и 10 способами выбрать цифру в разряд десятков и 2 способами в разряд единиц »

Или ещё проще: «каждая из 9 цифр в разряде сотен комбинируется с каждой из 10 цифр разряда десятков и с каждой из двух цифр в разряде единиц ».

Ответ : 180

А теперь…

Да, чуть не забыл об обещанном комментарии к задаче № 5, в которой Боре, Диме и Володе можно сдать по одной карте способами. Умножение здесь имеет тот же смысл: способами можно извлечь 3 карты из колоды И в каждой выборке переставить их способами.

А теперь задача для самостоятельного решения… сейчас придумаю что-нибудь поинтереснее, …пусть будет про ту же русскую версию блэкджека:

Задача 9

Сколько существует выигрышных комбинаций из 2 карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и, давайте будем считать выигрышной комбинацию из двух тузов.

(порядок карт в любой паре не имеет значения)

Краткое решение и ответ в конце урока.

Кстати, не надо считать пример примитивным. Блэкджек – это чуть ли не единственная игра, для которой существует математически обоснованный алгоритм, позволяющий выигрывать у казино. Желающие могут легко найти массу информации об оптимальной стратегии и тактике. Правда, такие мастера довольно быстро попадают в чёрный список всех заведений =)

Пришло время закрепить пройденный материал парой солидных задач:

Задача 10

У Васи дома живут 4 кота.

а) сколькими способами можно рассадить котов по углам комнаты?
б) сколькими способами можно отпустить гулять котов?
в) сколькими способами Вася может взять на руки двух котов (одного на левую, другого – на правую)?

Решаем : во-первых, вновь следует обратить внимание на то, что в задаче речь идёт о разных объектах (даже если коты – однояйцовые близнецы). Это очень важное условие!

а) Молчание котов. Данной экзекуции подвергаются сразу все коты
+ важно их расположение, поэтому здесь имеют место перестановки:
способами можно рассадить котов по углам комнаты.

Повторюсь, что при перестановках имеет значение лишь количество различных объектов и их взаимное расположение. В зависимости от настроения Вася может рассаживать животных полукругом на диване, в ряд на подоконнике и т.д. – перестановок во всех случаях будет 24. Желающие могут для удобства представить, что коты разноцветные (например, белый, чёрный, рыжий и полосатый) и перечислить все возможные комбинации.

б) Сколькими способами можно отпустить гулять котов?

Предполагается, что коты ходят гулять только через дверь, при этом вопрос подразумевает безразличие по поводу количества животных – на прогулку могут выйти 1, 2, 3 или все 4 кота.

Считаем все возможные комбинации:

Способами можно отпустить гулять одного кота (любого из четырёх);
способами можно отпустить гулять двух котов (варианты перечислите самостоятельно);
способами можно отпустить гулять трёх котов (какой-то один из четырёх сидит дома);
способом можно выпустить всех котов.

Наверное, вы догадались, что полученные значения следует просуммировать:
способами можно отпустить гулять котов.

Энтузиастам предлагаю усложнённую версию задачи – когда любой кот в любой выборке случайным образом может выйти на улицу, как через дверь, так и через окно 10 этажа. Комбинаций заметно прибавится!

в) Сколькими способами Вася может взять на руки двух котов?

Ситуация предполагает не только выбор 2 животных, но и их размещение по рукам:
способами можно взять на руки 2 котов.

Второй вариант решения: способами можно выбрать двух котов и способами посадить каждую пару на руки:

Ответ : а) 24, б) 15, в) 12

Ну и для очистки совести что-нибудь поконкретнее на умножение комбинаций…. Пусть у Васи дополнительно живёт 5 кошек =) Сколькими способами можно отпустить гулять 2 котов и 1 кошку?

То есть, с каждой парой котов можно выпустить каждую кошку.

Ещё один баян для самостоятельного решения:

Задача 11

В лифт 12-этажного дома сели 3 пассажира. Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со 2-го) этаже. Сколькими способами:

1) пассажиры могут выйти на одном и том же этаже (порядок выхода не имеет значения) ;
2) два человека могут выйти на одном этаже, а третий – на другом;
3) люди могут выйти на разных этажах;
4) пассажиры могут выйти из лифта?

И тут часто переспрашивают, уточняю: если 2 или 3 человека выходят на одном этаже, то очерёдность выхода не имеет значения. ДУМАЙТЕ, используйте формулы и правила сложения/умножения комбинаций. В случае затруднений пассажирам полезно дать имена и порассуждать, в каких комбинациях они могут выйти из лифта. Не нужно огорчаться, если что-то не получится, так, например, пункт № 2 достаточно коварен, впрочем, один из читателей отыскал простое решение, и я в очередной раз выражаю благодарность за ваши письма!

Полное решение с подробными комментариями в конце урока.

Заключительный параграф посвящён комбинациям, которые тоже встречаются достаточно часто – по моей субъективной оценке, примерно в 20-30% комбинаторных задач:

Перестановки, сочетания и размещения с повторениями

Перечисленные виды комбинаций законспектированы в пункте № 5 справочного материала Основные формулы комбинаторики , однако некоторые из них по первому прочтению могут быть не очень понятными. В этом случае сначала целесообразно ознакомиться с практическими примерами, и только потом осмысливать общую формулировку. Поехали:

Перестановки с повторениями

В перестановках с повторениями, как и в «обычных» перестановках, участвует сразу всё множество объектов , но есть одно но: в данном множестве один или бОльшее количество элементов (объектов) повторяются. Встречайте очередной стандарт:

Задача 12

Сколько различных буквосочетаний можно получить перестановкой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение : в том случае, если бы все буквы были различны, то следовало бы применить тривиальную формулу , однако совершенно понятно, что для предложенного набора карточек некоторые манипуляции будут срабатывать «вхолостую», так, например, если поменять местами любые две карточки с буквами «К» в любом слове, то получится то же самое слово. Причём, физически карточки могут сильно отличаться: одна быть круглой с напечатанной буквой «К», другая – квадратной с нарисованной буквой «К». Но по смыслу задачи даже такие карточки считаются одинаковыми , поскольку в условии спрашивается о буквосочетаниях.

Всё предельно просто – всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;
О – повторяется 3 раза;
Л – повторяется 2 раза;
Ь – повторяется 1 раз;
Ч – повторяется 1 раз;
И – повторяется 1 раз.

Проверка: 3 + 3 + 2 + 1 + 1 + 1 = 11, что и требовалось проверить.

По формуле количества перестановок с повторениями :
различных буквосочетаний можно получить. Больше полумиллиона!

Для быстрого расчёта большого факториального значения удобно использовать стандартную функцию Экселя: забиваем в любую ячейку =ФАКТР(11) и жмём Enter .

На практике вполне допустимо не записывать общую формулу и, кроме того, опускать единичные факториалы:

Но предварительные комментарии о повторяющихся буквах обязательны!

Ответ : 554400

Другой типовой пример перестановок с повторениями встречается в задаче о расстановке шахматных фигур, которую можно найти на складе готовых решений в соответствующей pdf-ке. А для самостоятельного решения я придумал менее шаблонное задание:

Задача 13

Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Формула здесь не годится, поскольку учитывает совпадающие перестановки (например, когда меняются местами силовые упражнения в среду с силовыми упражнениями в четверг). И опять – по факту те же 2 силовые тренировки могут сильно отличаться друг от друга, но по контексту задачи (с точки зрения расписания) они считаются одинаковыми элементами.

Двухстрочное решение и ответ в конце урока.

Сочетания с повторениями

Характерная особенность этого вида комбинаций состоит в том, что выборка проводится из нескольких групп, каждая из которых состоит из одинаковых объектов.

Сегодня все хорошо потрудились, поэтому настало время подкрепиться:

Задача 14

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение : сразу обратите внимание на типичный критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков. Пирожки в каждой группе, разумеется, отличаются – ибо абсолютно идентичные пончики можно смоделировать разве что на компьютере =) Однако физические характеристики пирожков по смыслу задачи не существенны, и хот-доги / ватрушки / пончики в своих группах считаются одинаковыми.

Что может быть в выборке? Прежде всего, следует отметить, что в выборке обязательно будут одинаковые пирожки (т.к. выбираем 5 штук, а на выбор предложено 3 вида). Варианты тут на любой вкус: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 + ватрушки + 2 пончика и т.д.

Как и при «обычных» сочетаниях, порядок выбора и размещение пирожков в выборке не имеет значения – просто выбрали 5 штук и всё.

Используем формулу количества сочетаний с повторениями:
способом можно приобрести 5 пирожков.

Приятного аппетита!

Ответ : 21

Какой вывод можно сделать из многих комбинаторных задач?

Порой, самое трудное – это разобраться в условии.

Аналогичный пример для самостоятельного решения:

Задача 15

В кошельке находится достаточно большое количество 1-, 2-, 5- и 10-рублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

В целях самоконтроля ответьте на пару простых вопросов:

1) Могут ли в выборке все монеты быть разными?
2) Назовите самую «дешевую» и самую «дорогую» комбинацию монет.

Решение и ответы в конце урока.

Из моего личного опыта, могу сказать, что сочетания с повторениями – наиболее редкий гость на практике, чего не скажешь о следующем виде комбинаций:

Размещения с повторениями

Из множества, состоящего из элементов, выбирается элементов, при этом важен порядок элементов в каждой выборке. И всё бы было ничего, но довольно неожиданный прикол заключается в том, что любой объект исходного множества мы можем выбирать сколько угодно раз. Образно говоря, от «множества не убудет».

Когда так бывает? Типовым примером является кодовый замок с несколькими дисками, но по причине развития технологий актуальнее рассмотреть его цифрового потомка:

Задача 16

Сколько существует четырёхзначных пин-кодов?

Решение : на самом деле для разруливания задачи достаточно знаний правил комбинаторики: способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин-кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

А теперь с помощью формулы. По условию нам предложен набор из цифр, из которого выбираются цифры и располагаются в определенном порядке , при этом цифры в выборке могут повторяться (т.е. любой цифрой исходного набора можно пользоваться произвольное количество раз) . По формуле количества размещений с повторениями:

Ответ : 10000

Что тут приходит на ум… …если банкомат «съедает» карточку после третьей неудачной попытки ввода пин-кода, то шансы подобрать его наугад весьма призрачны.

И кто сказал, что в комбинаторике нет никакого практического смысла? Познавательная задача для всех читателей сайт:

Задача 17

Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами) .

Сколько различных номерных знаков можно составить для региона?

Не так их, кстати, и много. В крупных регионах такого количества не хватает, и поэтому для них существуют по несколько кодов к надписи RUS.

Решение и ответ в конце урока. Не забываем использовать правила комбинаторики;-) …Хотел похвастаться эксклюзивом, да оказалось не эксклюзивом =) Заглянул в Википедию – там есть расчёты, правда, без комментариев. Хотя в учебных целях, наверное, мало кто прорешивал.

Наше увлекательное занятие подошло к концу, и напоследок я хочу сказать, что вы не зря потратили время – по той причине, что формулы комбинаторики находят ещё одно насущное практическое применение: они встречаются в различных задачах по теории вероятностей ,
и в задачах на классическое определение вероятности – особенно часто =)

Всем спасибо за активное участие и до скорых встреч!

Решения и ответы :

Задача 2: Решение : найдём количество всех возможных перестановок 4 карточек:

Когда карточка с нулём располагается на 1-м месте, то число становится трёхзначным, поэтому данные комбинации следует исключить. Пусть ноль находится на 1-м месте, тогда оставшиеся 3 цифры в младших разрядах можно переставить способами.

Примечание : т.к. карточек немного, то здесь несложно перечислить все такие варианты:
0579
0597
0759
0795
0957
0975

Таким образом, из предложенного набора можно составить:
24 – 6 = 18 четырёхзначных чисел
Ответ : 18

Задача 4: Решение : способами можно выбрать 3 карты из 36. и
2) Самый «дешёвый» набор содержит 3 рублёвые монеты, а самый «дорогой» – 3 десятирублёвые.

Задача 17: Решение : способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить: .
способами можно составить буквенную комбинацию автомобильного номера.
По правилу умножения комбинаций, всего можно составить:
автомобильных номера
(каждая цифровая комбинация сочетается с каждой буквенной комбинацией).
Ответ : 1726272

Урок по математике в 5 классе « Знакомьтесь, комбинаторика» Тема урока: Цель урока : сформулировать первоначальные навыки комбинаторных задач с помощью перебора возможных вариантов.
Задачи урока:

Образовательные:

    Развитие умения решать комбинаторные задачи методом полного перебора вариантов;

    Выработка умения применять математическую теорию в конкретных ситуациях;

    Знакомство учащихся с элементами гуманитарного знания, связанного с математикой.

Развивающие:

    Развитие умения самостоятельно выбирать способ решения и умения обосновать выбор;

    Развитие умения решать задачи путём только логических рассуждений;

    Развитие умения делать выбор рационального способа кодирования;

    Развитие коммуникативных и творческих способностей учащихся.

Воспитательные:
    Воспитывать чувство ответственности за качество и результат выполняемой работы; Прививать сознательное отношение к труду;
    Формировать ответственность за конечный результат .
Оборудование:
    интерактивная доска; раздаточный материал (цветные полоски: белая, синяя, красная); карточки с задачами.
Ход урока.
    Организационный момент. Изучение нового материала. Практическая часть. Рефлексия Выставление отметок Задание домашней работы
    Организационный момент.
Учитель: Здравствуйте, ребята! Очень часто в жизни приходится делать выбор, принимать решение. Это сделать очень трудно, не потому что выбора нет, а потому что приходится выбирать из множества возможных вариантов, различных способов, комбинаций. И нам всегда хочется, чтобы этот выбор был оптимальный. Задачи, которые мы сегодня будем решать помогут вам творить, думать необычно, оригинально, видеть то, мимо чего вы часто проходили не замечая. И еще сегодня в очередной раз убедимся, что наш мир полон математики и продолжим исследование на предмет выявления математики вокруг нас. Знаете ли вы, что такое «царственная осанка»? Попробуем принять царственную позу: спина прямая, мышцы головы без напряжения, выражение лица очень значительное: ведь вы так хорошо умеете считать, как не умеют царственные особы. Очень быстро активизируем свой мозг. Для этого интенсивно помассажируем межбровную точку: указательным пальцем правой руки делаем 5 круговых движений в одну сторону и в другую. Повторим это 2 – 3 раза
    Актуализация темы и мотивация.
Давайте решим задачу №1, Задача 1 . У кассы кинотеатра стоят четверо ребят. У двух из них сторублевые купюры, у других двух – пятидесятирублевые. (Учитель вызывает 4 учеников к доске и дает им модели купюр). Билет в кино стоит 50 рублей. В начале продажи касса пуста. (Учитель вызывает «кассира» и дает ему «билеты») . Как должны расположиться ребята, чтобы никому не пришлось ждать сдачи? Разыгрываем сценку, с помощью которой можно найти два возможных варианта решения:
    50 рублей, 100 рублей, 50 рублей, 100 рублей; 50 рублей, 50 рублей, 100 рублей, 100 рублей (слайд №2 и №3).
Задача №2 . Несколько стран решили использовать для своего государственного флага символику в виде трех горизонтальных полос одинаковой ширины разных цветов – белого, синего, красного. Сколько стран могут использовать такую символику при условии, что у каждой страны – свой флаг? (Учащимся раздаются цветные полоски (белый, синий, красный) и предлагается составить разные варианты флагов? (Слайд№4) Учитель: Прежде чем переходить к следующему этапу урока, немного отдохнём. Сидя на стуле – расслабьтесь, примите позу пиджака, висящего на вешалке, «Постреляйте» глазами в соседей. Заведите локти за спину как можно сильнее, затем с силой обнимите себя.
    Изучение нового материала .
Учитель: Итак, при решении этих задач мы осуществили перебор всех возможных вариантов, или, как обычно говорят в этих случаях, всех возможных комбинаций. Поэтому подобные задачи называют комбинаторными. Просчитывать возможные (или невозможные) варианты в жизни приходится довольно часто, поэтому полезно познакомиться с комбинаторными задачами, а раздел математики, занимающийся решением этих задач, называется комбинаторикой. (Слайд№5) Определение учащиеся записывают в тетрадь:

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения заданных элементов по заданным правилам

Обычный вопрос в комбинаторных задачах – это « Сколькими способами …?» или

« Сколько вариантов …?»

Учитель : Давайте еще раз вернемся к задаче о флагах, решим ее используя перебор возможных вариантов: (слайд №7) КБС КСБ БСК БКС СБК СКБ Ответ: 6 вариантов. Итак, при решении этой задачи мы искали способ перебора возможных вариантов. Во многих случаях оказывается полезным прием построения картинки – схемы перебора вариантов. Это, во – первых, наглядно, во- вторых, позволяет нам все учесть, ничего не пропустить.

Решение Флаг

Варианты БСК, БКС, СБК, СКБ, КБС, КСБ.

Ответ: 6 вариантов.

Вопрос, ответ на который должны знать все, какой из представленных вариантов флагов – государственный флаг РФ.(Слайд№7)

Оказывается, Не только флаг России имеет эти три цвета. Есть государства, флаги которых, имеют такие же цвета.

КБС – Люксембург,

Нидерланды.

Франция СКБ

Учитель: Найдем правило решения таких задач путем логического рассуждения.

Разберем на примере цветных полосок. Возьмем белую полоску – её можно переставить 3 раза, возьмем синюю полоску – её можно переставить только 2 раза, т.к. одно из мест уже занято белой, возьмем красную полоску – её можно положить только 1 раз.

ИТОГО: 3 х 2 х 1=6

Основное правило произведения :

Правило умножения: если первый элемент в комбинации можно выбрать а способами, после чего второй элемент – b способами, то общее число комбинаций будет равно а х b . (слайд №8)

Физкультминутка для глаз. (слайд №9)

Упражнение « Фигуры».

Нарисовать глазами квадрат, круг, треугольник, овал, ромб по часовой стрелке, а затем- против.

    Практическая часть

Учитель: А теперь перейдем к математическим задачам. (раздаем карточки с задачами)

    У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить? (Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма.)

    В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать? (Всего 11 человек, значит, капитана можно выбрать 11 способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару капитана и его заместителя можно выбрать 11 10 = 110 способами.)

    Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр? (Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел.

    Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется? (Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция с учетом исключения повторов цифр - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел.)

    Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться? (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел.)

    Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра? (5 4 3 2 1 = 120 вариантов.) Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов? (6 5 4 3 2 1 = 720 способов.)

    6 приборов? (6 · 5 · 4 · 3 · 2 · 1 = 720 способов.)

    (8 · 7 · 6 · 5 · 4 = 6720 вариантов.)

    (Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 · 10 · 10 · 10 · 10 · 10 · 10 = 8 000 000 номеров.)

    Рефлексия

Учитель: Ребята вот и подходит к концу наш урок. Как вы считаете, мы сегодня достигли нашей цели, почему? Что было трудным на уроке, как с эти можно бороться? Подумайте и поставьте себе за свой труд и работу отметку, поставьте сами, эту отметку никто из ребят не увидит, попробуйте быть честным с самим собой. Полностью ли вы участвовали в работе на уроке? Что нужно сделать, чтобы результат был лучше?

Кроме того, ученикам предлагается ответить на 3 блиц - вопроса:

    На сегодняшнем уроке мне было … (легко, обычно, трудно)

    Новый материал я … (усвоил и могу применить, усвоил и затрудняюсь применить, не усвоил)

    Моя самооценка за урок …

Ответы на приведенные вопросы можно не подписывать, т.к. их основная функция помочь учителю проанализировать урок и его результаты

    Подведение итогов . Выставление отметок

Учитель: Я очень рада, что многие из вас сегодня хорошо поработали, узнали много нового, но я очень хотела бы, чтобы все вы дома хорошо поработали и не получили на следующем уроке двоек.

7. Задание домашней работы :

1)Составить задачу о своем классе

2) Несколько стран решили использовать для своего государственного флага символику в виде 3 горизонтальных полос разной ширины, разных цветов – белый, синий, красный. Сколько стран могут использовать такую символику при условии,что у каждой страны свой флаг?

3) а) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9?

б) Сколько двузначных чисел можно составить из цифр 1, 3, 5, 7, 9 при условии, что цифры не должны повторяться

Учитель : Итак, я была рада встрече с вами, интересуйтесь математикой, это, несомненно, отразится в положительную сторону в ваших размышлениях и действиях. Урок окончен. Всем спасибо. До свидания.

Литература:

Е.А.Бунимович, В.А. Булычев. Вероятность и статистика в курсе математики общеобразовательной школы: лекции 1- 4, 5 – 8. – М.: Педагогический университет “Первое сентября”, 2006.

Виленкин Н.Я. Математика. 5 класс: учебник для общеобразоват. учреждений/ Н.Я.Виленкин и др. – М. : Мнемозина, 2009.

Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО. Пресс, 2006.

5 класс. «Математика-5», И.И. Зубарева, А.Г. Мордкович, 2004 год.

Задачи (карточки)

    У одного довольно знаменитого мушкетера в гардеробе имеются 3 элегантных шляпы,4 чудных плаща и 2 пары отличных сапог. Сколько вариантов костюма ему можно составить?

    В футбольной команде 11 человек. Необходимо выбрать капитана и его заместителя. Сколькими способами можно это сделать?

    Сколько различных двузначных чисел можно составить, используя цифры 1, 4, 7, если допустить повторение цифр

    Сколько различных трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5 при условии, что ни одна цифра не повторяется?

    Сколько различных двузначных чисел можно составить из цифр 0, 1, 2, 3, если цифры: а) могут повторяться; б) не могут повторяться?

    Шифр для сейфа состоит из пяти различных цифр. Сколько различных вариантов составления шифра?

    Сколькими способами можно разместить 6 человек за столом, на котором поставлено 6 приборов?

    В пятом классе изучаются 8 предметов. Сколько различных вариантов расписания можно составить на понедельник, если в этот день должно быть 5 уроков и все уроки – разные?
  1. Сколько вариантов семизначных телефонных номеров можно составить, если исключить из них номера, начинающиеся с 0 и 9?

Ответы

    Выбираем по одному элементу из трех множеств, то есть, составляем «тройку», значит, по правилу умножения получаем 3 4 2 = 24 варианта костюма.

    Всего 11 человек, значит, капитана можно выбрать 11-ю способами, осталось 10 футболистов, из которых можно выбрать заместителя капитана. Итак, пару, капитана и его заместителя, можно выбрать 11 10 = 110 способами.

    Должно получиться двузначное число – всего две позиции. На первую позицию можно поставить любую из предложенных цифр – 3 варианта выбора, на вторую позицию, с учетом возможности повтора цифры, тоже 3 варианта выбора. Значит, пару цифр мы составляем 3 3 = 9 способами, т.е. получится 9 чисел.

    Трехзначное число: первая позиция – 5 вариантов цифр, вторая позиция, с учетом исключения повторов цифр, - 4 варианта, третья позиция – 3 варианта. Получаем 5 4 3 = 60 чисел.

    (а) Двузначное число, как и любое многозначное, не может начинаться с 0, поэтому на первую позицию можно поставить лишь 3 из имеющихся 4-х цифр, 3 варианта выбора, на вторую позицию, с учетом повтора, можно поставить любую из цифр – 4 варианта выбора. Поэтому получается 3 4 = 12 чисел; б) Первая позиция – 3 варианта, вторая позиция – 3 варианта, т.к. повтор исключается. Получаем 3 3 = 9 чисел.

    5 4 3 2 1 = 120 вариантов.
  1. 6 5 4 3 2 1 = 720 способов

  2. 8 7 6 5 4 = 6720 вариантов

    Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 – всего 10 цифр, исключая по условию 0 и 9 в начале номера, с учетом возможности повтора, получаем 8 10 10 10 10 10 10 = 8 000 000 номеров.

При решении многих практических задач приходится использовать комбинации элементов, выбирать из данной совокупности те, которые имеют определенные свойства, и размещать их в определенном порядке. Такие задачи называются комбинаторными . Раздел математики, посвящённый решению задач выбора и расположения элементов в соответствии с данными условиями, называется комбинаторикой. Термин «комбинаторика» происходит от латинского слова «combina» , что в переводе на русский язык означает – «сочетать», «соединять».

Выбранные группы элементов называют соединениями. Если все элементы соединения разные, то получаем соединения без повторений, которые и рассмотрим ниже.

Большинство комбинаторных задач решается с помощью двух основных правил – правила суммы и правила произведения .

Задача 1.

В магазине «Все для чая» есть 6 разных чашек и 4 разных блюдца. Сколько вариантов чашки и блюдца можно купить?

Решение .

Чашку мы можем выбрать 6-ю способами, а блюдце 4-я способами. Так как нам надо купить пару чашку и блюдце, то это можно сделать 6 · 4 = 24 способами (по правилу произведения).

Ответ: 24.

Для успешного решения комбинаторных задач надо еще и правильно выбрать формулу, по которой искать количество нужных соединений. В этом поможет следующая схема.

Рассмотрим решение нескольких задач на разные виды соединений без повторений.

Задача 2.

Найдите количество трехзначных чисел, которые можно составить из цифр 1, 2, 3, 4, 5, 6, 7, если цифры в числе повторяться не могут.

Решение.

Для выбора формулы выясняем, что для чисел, которые мы будем составлять, порядок учитывается и не все элементы одновременно выбираются. Значит, это соединение – размещение из 7 элементов по 3. Воспользуемся формулой для числа размещений: A 7 3 = 7(7 – 1)(7 – 2) = 7 · 6 · 5 = 210 чисел.

Ответ: 210.

Задача 3.

Сколько существует семизначных телефонных номеров, в которых все цифры разные, а номер не может начинаться с нуля?

Решение.

На первый взгляд эта задача такая же, как и предыдущая, но сложность в том, что надо не учитывать те соединения, которые начинаются с нуля. Значит необходимо из существующих 10-ти цифр составить все семизначные номера телефонов, а потом от полученного числа отнять количество номеров, начинающихся с нуля. Формула будет иметь вид:

A 10 7 – A 9 6 = 10 · 9 · 8 · 7 · 6 · 5 · 4 – 9 · 8 · 7 · 6 · 5 · 4 = 544 320.

Ответ: 544 320.

Задача 4.

Сколькими способами можно расставить на полке 12 книг, из которых 5 книг – это сборники стихотворений, так, чтобы сборники стояли рядом?

Решение.

Сначала примем 5 сборников условно за одну книгу, потому что они должны стоять рядом. Так как в соединении существенным есть порядок, и все элементы используются, значит это перестановки из 8 элементов (7 книг + условная 1 книга). Их количество Р 8 . Далее будем переставлять между собой только сборники стихотворений. Это можно сделать Р 5 способами. Поскольку нам нужно расставить и сборники, и другие книги, то воспользуемся правилом произведения. Следовательно, Р 8 · Р 5 = 8! · 5!. Число способов будет большим, поэтому ответ можно оставить в виде произведения факториалов.

Ответ: 8! · 5!

Задача 5 .

В классе 16 мальчиков и 12 девочек. Для уборки территории возле школы нужно 4 мальчика и 3 девочки. Сколькими способами можно их выбрать со всех учеников класса?

Решение.

Сначала отдельно выберем 4 мальчика из 16 и 3 девочки из 12. Так как порядок размещения не учитывается, то соответственные соединения – сочетания без повторений. Учитывая необходимость одновременного выбора и мальчиков, и девочек, используем правило произведения. В результате число способов будет вычисляться таким образом:

С 16 4 · С 12 3 = (16!/(4! · 12!)) · (12!/(3! · 9!)) = ((13 · 14 · 15 · 16) / (2 · 3 · 4)) ·((10 · 11 · 12) / (2 · 3)) = 400 400.

Ответ: 400 400.

Таким образом, успешное решение комбинаторной задачи зависит от правильного анализа ее условия, определения типа соединений, которые будут составляться, и выбора подходящей формулы для вычисления их количества.

Остались вопросы? Не знаете, как решать комбинаторные задачи?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Во многих комбинаторных задачах непосредственное нахождение числа интересующих нас вариантов оказывается затруднительным. Однако при некотором изменении условия задачи можно найти количество вариантов, превосходящее исходное в известное число раз. Такой прием называется методом кратного подсчета .

1. Сколько анаграмм имеет слово КЛАСС?

Трудность в том, что в этом слове две одинаковые буквы С. Будем временно считать их разными и обозначим С 1 и С 2 . Тогда число анаграмм окажется равным 5! = 120. Но те слова, которые отличаются друг из друга лишь перестановкой букв С 1 и С 2 , на самом-то деле являются одной и той же анаграммой! Поэтому 120 анаграмм разбиваются на пары одинаковых, т.е. искомое число анаграмм равно 120/2 = 60.

2. Сколько анаграмм имеет слово ШАРАДА?

Считая три буквы А различными буквами А 1 , А 2 , А 3 , получим 6! анаграмм. Но слова, которые получаются друг из друга только перестановкой букв А 1 , А 2 , А 3 , на самом деле являются одной и той же анаграммой. Поскольку имеется 3! перестановок букв А 1 , А 2 , А 3 , полученные изначально 6! анаграмм разбиваются на группы по 3! одинаковых, и число различных анаграмм оказывается равным 6!/3! = 120.

3. Сколько существует четырехзначных чисел, в записи которых есть хотя бы одна четная цифра?

Найдем количество «ненужных» четырехзначных чисел, в записи которых присутствуют только нечетные цифры. Таких чисел 5 4 = 625. Но всего четырехзначных чисел 9000, поэтому искомое количество «нужных» чисел равно 9000 – 625 = 8375.

  1. Найти число анаграмм у слов ВЕРЕСК, БАЛАГАН, ГОРОДОВОЙ.
  2. Найти число анаграмм у слов БАОБАБ, БАЛЛАДА, ПЕРЕПОЛОХ, АНАГРАММА, МАТЕМАТИКА, КОМБИНАТОРИКА, ОБОРОНОСПОСОБНОСТЬ.
  3. Сколькими способами можно поселить 7 приезжих в три гостиничных номера: одноместный, двухместный и четырехместный?
  4. В холодильнике лежат два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд Пете дают один какой-то фрукт. Сколькими способами это может быть сделано?
  5. Из семи лучших лыжников школы нужно отобрать команду из трех человек для участия в городских соревнованиях. Сколькими способами это можно сделать?
  6. Перед экзаменом профессор пообещал поставить двойки половине экзаменуемых. На экзамен пришло 20 студентов. Сколькими способами он может выполнить обещание?
  7. Сколько слов можно составить из пяти букв А и не более чем из трех букв Б?
  8. В продаже есть шоколадное, клубничное и молочное мороженое. Сколькими способами можно купить три мороженых?
  9. При приготовлении пиццы к сыру добавляются разные компоненты, обеспечивающие тот или иной вкус. В распоряжении Билла имеются лук, грибы, помидоры, перец и анчоусы, причем все это, по его мнению, можно добавлять к сыру. Сколько видов пиццы может приготовить Билл?
  10. Свидетель криминальной разборки запомнил, что преступники скрылись на «мерседесе», номер которого содержал буквы Т, З, У и цифры 3 и 7 (номером является строка, в которой сначала идут три буквы, а затем - три цифры). Сколько существует таких номеров?
  11. Сколько диагоналей в выпуклом n -угольнике?
  12. Сколько всего существует n -значных чисел?
  13. Сколько существует десятизначных чисел, в записи которых есть хотя бы две одинаковые цифры?
  14. Кубик бросают трижды. Среди всевозможных последовательностей результатов есть такие, в которых хотя бы один раз выпала шестерка. Сколько их?
  15. Сколько пятизначных чисел имеют в своей записи цифру 1?
  16. Сколькими способами можно расставить на шахматной доске белого и черного короля так, чтобы они не били друг друга?
  17. Сколько делителей у числа 10800?

Реферат на тему:

Выполнил ученик 10 класса «В»

средней школы №53

Глухов Михаил Александрович

г. Набережные Челны

2002 г.
Содержание

Из истории комбинаторики_________________________________________ 3
Правило суммы___________________________________________________ 4
-
Правило произведения_____________________________________________ 4
Примеры задач____________________________________________________ -
Пересекающиеся множества________________________________________ 5
Примеры задач____________________________________________________ -
Круги Эйлера_____________________________________________________ -
Размещения без повторений________________________________________ 6
Примеры задач____________________________________________________ -
Перестановки без повторений_______________________________________ 7
Примеры задач____________________________________________________ -
Сочетания без повторений__________________________________________ 8
Примеры задач____________________________________________________ -
Размещения и сочетания без повторений______________________________ 9
Примеры задач____________________________________________________ -
Перестановки с повторениями_______________________________________ 9
Примеры задач____________________________________________________ -
Задачи для самостоятельного решения________________________________ 10
Список используемой литературы___________________________________ 11

Из истории комбинаторики

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Нидийцы умели вычислять числа, которые сейчас называют "сочетания". В XII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из n слогов. Как научная дисциплина, комбинаторика сформировалась в XVII в. В книге "Теория и практика арифметики" (1656 г.) французский автор А. Также посвящает сочетаниям и перестановкам целую главу.
Б. Паскаль в "Трактате об арифметическом треугольнике" и в "Трактате о числовых порядках" (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин "комбинаторика" стал употребляться после опубликования Лейбницем в 1665 г. работы "Рассуждение о комбинаторном искусстве", в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги "Ars conjectandi" (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в XIX в.

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств – правило суммы и правило произведения.

Правило суммы

Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и числа элементов множества Y.

То есть, если на первой полке стоит X книг, а на второй Y, то выбрать книгу из первой или второй полки, можно X+Y способами.

Примеры задач

Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 17 тем по алгебре и 13 тем по геометрии. Сколькими способами он может выбрать одну тему для практической работы?

Решение: X=17, Y=13

По правилу суммы X U Y=17+13=30 тем.

Имеется 5 билетов денежно-вещевой лотереи, 6 билетов спортлото и 10 билетов автомотолотереи. Сколькими способами можно выбрать один билет из спортлото или автомотолотереи?

Решение: Так как денежно-вещевая лотерея в выборе не участвует, то всего 6+10=16 вариантов.

Правило произведения

Если элемент X можно выбрать k способами, а элемент Y-m способами то пару (X,Y) можно выбрать k*m способами.

То есть, если на первой полке стоит 5 книг, а на второй 10, то выбрать одну книгу с первой полки и одну со второй можно 5*10=50 способами.

Примеры задач

Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?

Решение: Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12*3=36 вариантов переплета.

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

Решение: В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX , где Y и Z -любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.


Пересекающиеся множества

Но бывает, что множества X и Y пересекаются, тогда пользуются формулой

, где X и Y - множества, а - область пересечения. Примеры задач

20 человекзнаютанглийскийи 10 - немецкий, изних 5 знаютианглийский, инемецкий. СколькоЧеловеквсего?

Ответ: 10+20-5=25 человек.

Также часто для наглядного решения задачи применяются круги Эйлера. Например:

Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?

Решение: Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий.

Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человек.

Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части.

Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек.

По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.


Размещения без повторений.

Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?

Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.

Если X-множество, состоящие из n элементов, m≤n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество X, содержащее m элементов называется упорядоченное множество X, содержащее m элементов.

Количество всех размещений из n элементов по m обозначают

n! - n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа nЗадача

Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?

Решение : два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами считаются, разными, поэтому:

Возможно 360 вариантов.


Перестановки без повторений

В случае n=m (см. размещения без повторений) из n элементов по m называется перестановкой множества x.

Количество всех перестановок из n элементов обозначают P n.

Действительно при n=m:

Примеры задач

Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?

1) Найдем количество всех перестановок из этих цифр: P 6 =6!=720

2) 0 не может стоять впереди числа, поэтому от этого числа необходимо отнять количество перестановок, при котором 0 стоит впереди. А это P 5 =5!=120.

P 6 -P 5 =720-120=600

Проказница Мартышка

Да косолапый Мишка

Затеяли играть квартет

Стой, братцы стой! –

Кричит Мартышка, - погодите!

Как музыке идти?

Ведь вы не так сидите…

И так, и этак пересаживались – опять музыка на лад не идет.