Квадратичная функция. Парабола: определение, свойства, построение, каноническое уравнение Все свойства параболы

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подитожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

Проявление параболы в жизни

Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.

  • 6. Теорема о разложении определителя на сумму определителей и следствия из нее.
  • 7. Теорема о разложении определителя по элементам строки(столбца) и следствия из неё.
  • 8. Операции над матрицами и их свойства. Доказать одно из них.
  • 9.Операция транспонирования матрицы и её свойства.
  • 10. Определение обратной матрицы. Доказать что у каждой обратимой матрицы существует лишь одно обращение.
  • 13. Блочные матрицы. Сложение и умножение блочных матриц. Теорема об определителе квазитреугольной матрицы.
  • 14. Теорема об определителе произведения матриц.
  • 15. Теорема о существовании обратной матрицы.
  • 16.Определение ранга матрицы. Теорема о базисном миноре и следствие из неё.
  • 17. Понятие о линейной зависимости строк и столбцов матрицы. Теорема о ранге матрицы.
  • 18. Методы вычисления ранга матрицы: метод окаймляющих миноров, метод элементарных преобразований.
  • 19. Применение элементарных преобразований только строк(только столбцов) к отысканию обратной матрицы.
  • 20. Системы линейных уравнений. Критерий совместности и критерий определенности.
  • 21. Решение совместной системы линейных уравнений.
  • 22. Однородные системы линейных уравнений. Теорема о существовании фундаментальной системы решений.
  • 23. Линейные операции над векторами и их свойства. Доказать одно из них.
  • 24. Определение разности двух векторов. Доказать что для любых векторов иразностьсуществует и единственна.
  • 25. Определение базиса, координаты вектора в базисе. Теорема о разложении вектора по базису.
  • 26. Линейная зависимость векторов. Свойства понятия линейной зависимости, доказать одно из них.
  • 28. Декартовы системы координат в пространстве, на плоскости и на прямой. Теорема о линейной комбинации векторов и следствия из нее.
  • 29. Вывод формул выражающих координаты точки в одной дск через координаты этой же точки в другой дск.
  • 30. Скалярное произведение векторов. Определение и основные свойства.
  • 31. Векторное произведение векторов. Определение и основные свойства.
  • 32. Смешанное произведение векторов. Определение и основные свойства.
  • 33. Двойное векторное произведение векторов. Определение и формула для вычисления(без доказательства).
  • 34. Алгебраические линии и поверхности. Теоремы об инвариантности(неизменности) порядка.
  • 35. Общие уравнения плоскости и прямой.
  • 36. Параметрические уравнения прямой и плоскости.
  • 37. Переход от общих уравнений плоскости и прямой на плоскости к их параметрическим уравнениям. Геометрический смысл коэффициентов а,в,с (а,в) в общем уравнении плоскости(прямой на плоскости).
  • 38. Исключение параметра из параметрических уравнений на плоскости(в пространстве), канонические уравнения прямой.
  • 39. Векторные уравнения прямой и плоскости.
  • 40. Общие уравнения прямой в пространстве, приведение к каноническому виду.
  • 41. Расстояние от точки до плоскости. Расстояние от точки до прямой. Другие задачи о прямых и плоскостях.
  • 42. Определение эллипса. Каноническое уравнение эллипса. Параметрические уравнения эллипса. Эксцентриситет эллипса.
  • 44. Определение параболы. Вывод канонического уравнения параболы.
  • 45. Кривые второго порядка и их классификация. Основная теорема о квп.
  • 45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.
  • 47.Определение линейного пространства. Примеры.
  • 49. Определение Евклидова пространства. Длина вектора. Угол между векторами. Неравенство Коши-Буняковского. Пример.
  • 50. Определение евклидова пространства. Теорема Пифагора. Неравенство треугольникаю Пример.
  • 44. Определение параболы. Вывод канонического уравнения параболы.

    Определение: Параболой называется геометрическое место точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а фиксированная прямая – директрисой параболы.

    Для вывода уравнения построим:

    Согласно определению:

    Так как у 2 >=0 то парабола лежит в правой полуплоскости. При х возрастающем от 0 до бесконечности
    . Парабола симметрична относительно Ох. Точка пересечения параболы со своей осью симметрии называется вершиной параболы.

    45. Кривые второго порядка и их классификация. Основная теорема о квп.

    Существует 8 типов КВП:

    1.эллипсы

    2.гиперболы

    3.параболы

    Кривые 1,2,3 – канонические сечения. Если пересечь конус плоскостью параллельной оси конуса то получим гиперболу. Если плоскостью параллельной образующей то параболу. Все плоскости не проходят через вершину конуса. Если любой другой плоскостью то эллипс.

    4.пара параллельных прямых y 2 +a 2 =0, a0

    5.пара пересекающихся прямых y 2 -k 2 x 2 =0

    6.одна прямая y 2 =0

    7.одна точка x 2 + y 2 =0

    8.пустое множество - пустая кривая (кр. без точек) x 2 + y 2 +1=0 или x 2 + 1=0

    Теорема(основная теорема о КВП): Уравнение вида

    a 11 x 2 + 2 a 12 x y + a 22 y 2 + 2 a 1 x + 2 a 2 y + a 0 = 0

    может представлять только кривую одного из указанных восьми типов.

    Идея доказательства состоит в том чтобы прейти к такой системе координат в которой уравнение КВП примет наиболее простой вид, когда тип кривой, которую оно представляет становится очевидным. Теорема доказывается с помощью поворота системы координат на такой угол при котором член с произведением координат исчезает. И с помощью параллельного переноса системы координат при котором исчезает или член с переменной х или член с переменной у.

    Переход к новой системе координат: 1. Параллельный перенос

    2. Поворот

    45. Поверхности второго порядка и их классификация. Основная теорема о пвп. Поверхности вращения.

    ПВП - множество точек прямоугольные координаты которых удовлетворяют уравнению 2 степени: (1)

    Предполагается, что хотя бы один из коэффициентов при квадратах или при произведениях отличен от 0. Уравнение инвариантно относительно выбора системы координат.

    Теорема Любая плоскость пересекает ПВП по КВП за исключением особого случая, когда в сечении – вся плоскость.(ПВП может быть плоскостью или парой плоскостей).

    Существует 15 типов ПВП. Перечислим их указав уравнения, которыми они задаются в подходящих системах координат. Эти уравнения называются каноническими(простейшими). Строят геометрические образы соответствующие каноническим уравнениям методом параллельных сечений: Пересекают поверхность координатными плоскостями и плоскостями параллельными им. В результате получают сечения и кривые, которые дают представление о форме поверхности.

    1. Эллипсоид.

    Если a=b=c то получаем сферу.

    2. Гиперболоиды.

    1). Однополостный гиперболоид:

    Cечение однополостного гиперболоида координатными плоскостями: XOZ:
    - гипербола.

    YOZ:
    - гипербола.

    Плоскостью XOY:
    - эллипс.

    2). Двуполостной гиперболоид.

    Начало координат – точка симметрии.

    Координатные плоскости – плоскости симметрии.

    Плоскость z = h пересекает гиперболоид по эллипсу
    , т.е. плоскость z = h начинает пересекать гиперболоид при | h |  c . Сечение гиперболоида плоскостями x = 0 и y = 0 - это гиперболы.

    Числа a,b,c в уравнениях (2),(3),(4) называются полуосями эллипсоидов и гиперболоидов.

    3. Параболоиды.

    1). Эллиптический параболоид:

    Сечение плоскостью z = h есть
    , где
    . Из уравнения видно, что z  0 – это бесконечная чаша.

    Пересечение плоскостями y = h и x = h
    - это парабола и вообще

    2). Гиперболический параболоид:

    Очевидно, плоскости XOZ и YOZ – плоскости симметрии, ось z – ось параболоида. Пересечение параболоида с плоскостью z = h – гиперболы:
    ,
    . Плоскость z =0 пересекает гиперболический параболоид по двум осям
    которые являются ассимптотами.

    4. Конус и цилиндры второго порядка.

    1). Конус – это поверхность
    . Конус оюразован прямыми линиями, проходящими через начало координат 0 (0, 0, 0). Сечение конуса – это эллипсы с полуосями
    .

    2). Цилиндры второго порядка.

    Это эллиптический цилиндр
    .

    Какую бы прямую мы не взяли пересекающую эллипсы и параллельную оси Oz то она удовлетворяет этому уравнению. Перемещая эту прямую вокруг эллипса получим поверхность.

    Гиперболический цилиндр:

    На плоскости ХОУ это гипербола. Перемещаем прямую пересекающую гиперболу параллельно Oz вдоль гиперболы.

    Параболический цилиндр:

    На плоскости ХОУ это парабола.

    Цилиндрические поверхности образуются прямой(образующей) перемещающейся параллельно самой себе вдоль некоторой прямой(направляющей).

    10. Пара пересекающихся плоскостей

    11.Пара параллельных плоскостей

    12.
    - прямой

    13.Прямая – «цилиндр», построенный на одной точке

    14.Одна точка

    15.Пустое множество

    Основная теорема о ПВП: Каждая ПВП принадлежит к одному из 15 типов рассмотренных выше. Других ПВП нет.

    Поверхности вращения. Пусть задана ПДСК Oxyz и в плоскости Oyz линия е определяемая уравнением F(y,z)=0 (1). Составим уравнение поверхности полученной вращением этой линии вокруг оси Oz. Возьмем на линии е точку М(y,z). При вращении плоскости Oyz вокруг Oz точка М опишет окружность. Пусть N(X,Y,Z) – произвольная точка этой окружности. Ясно что z=Z.

    .

    Подставив найденные значения z и y в уравнение (1) получим верное равенство:
    т.е. координаты точкиN удовлетворяют уравнению
    . Таким образом любая точка поверхности вращения удовлетворяет уравнению (2). Не сложно доказать что если точкаN(x 1 ,y 1 ,z 1) удовлетворяет уравнению (2) то она принадлежит рассматриваемой поверхности. Теперь можно сказать что уравнение (2) есть искомое уравнение поверхности вращения.

    "

    Урок: как построить параболу или квадратичную функцию?

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    Парабола — это график функции описанный формулой ax 2 +bx+c=0.
    Чтобы построить параболу нужно следовать простому алгоритму действий:

    1) Формула параболы y=ax 2 +bx+c ,
    если а>0 то ветви параболы направленны вверх ,
    а то ветви параболы направлены вниз .
    Свободный член c эта точке пересекается параболы с осью OY;

    2) , ее находят по формуле x=(-b)/2a , найденный x подставляем в уравнение параболы и находим y ;

    3) Нули функции или по другому точки пересечения параболы с осью OX они еще называются корнями уравнения. Чтобы найти корни мы уравнение приравниваем к 0 ax 2 +bx+c=0 ;

    Виды уравнений:

    a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
    b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
    ax 2 +bx=0,
    х(ax+b)=0,
    х=0 и ax+b=0;
    c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);

    4) Найти несколько дополнительных точек для построения функции.

    ПРАКТИЧЕСКАЯ ЧАСТЬ

    И так теперь на примере разберем все по действиям:
    Пример №1:
    y=x 2 +4x+3
    c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
    a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
    Найдем корни уравнения x 2 +4x+3=0
    По дискриминанту находим корни
    a=1 b=4 c=3
    D=b 2 -4ac=16-12=4
    x=(-b±√(D))/2a
    x 1 =(-4+2)/2=-1
    x 2 =(-4-2)/2=-3

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2

    х -4 -3 -1 0
    у 3 0 0 3

    Подставляем вместо х в уравнение y=x 2 +4x+3 значения
    y=(-4) 2 +4*(-4)+3=16-16+3=3
    y=(-3) 2 +4*(-3)+3=9-12+3=0
    y=(-1) 2 +4*(-1)+3=1-4+3=0
    y=(0) 2 +4*(0)+3=0-0+3=3
    Видно по значениям функции,что парабола симметрична относительно прямой х=-2

    Пример №2:
    y=-x 2 +4x
    c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 Найдем корни уравнения -x 2 +4x=0
    Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
    х(-x+4)=0, х=0 и x=4.

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
    х 0 1 3 4
    у 0 3 3 0
    Подставляем вместо х в уравнение y=-x 2 +4x значения
    y=0 2 +4*0=0
    y=-(1) 2 +4*1=-1+4=3
    y=-(3) 2 +4*3=-9+13=3
    y=-(4) 2 +4*4=-16+16=0
    Видно по значениям функции,что парабола симметрична относительно прямой х=2

    Пример №3
    y=x 2 -4
    c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
    a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
    Найдем корни уравнения x 2 -4=0
    Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
    x 2 =4
    x 1 =2
    x 2 =-2

    Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
    х -2 -1 1 2
    у 0 -3 -3 0
    Подставляем вместо х в уравнение y= x 2 -4 значения
    y=(-2) 2 -4=4-4=0
    y=(-1) 2 -4=1-4=-3
    y=1 2 -4=1-4=-3
    y=2 2 -4=4-4=0
    Видно по значениям функции,что парабола симметрична относительно прямой х=0

    Подписывайтесь на канал на YOUTUBE , чтобы быть в курсе всех новинок и готовится с нами к экзаменам.

    Во всей этой главе предполагается, что в плоскости (в которой лежат все рассматриваемые далее фигуры) выбран определенный масштаб; рассматриваются лишь прямоугольные системы координат с этим масштабом.

    § 1. Парабола

    Парабола известна читателю из школьного курса математики как кривая, являющаяся графиком функции

    (рис. 76). (1)

    График любого квадратного трехчлена

    также является параболой; можно посредством одного лишь сдвига системы координат (на некоторый вектор ОО), т. е. преобразования

    достигнуть того, чтобы график функции (во второй системе координат) совпадал с графиком (2) (в первой системе координат).

    В самом деле, произведем подстановку (3) в равенство (2). Получим

    Мы хотим подобрать так, чтобы коэффициент при и свободный член многочлена (относительно ) в правой части этого равенства были равны нулю. Для этого определяем из уравнения

    что и дает

    Теперь определяем из условия

    в которое подставляем уже найденное значение . Получим

    Итак, посредством сдвига (3), в котором

    мы перешли к новой системе координат, в которой уравнение параболы (2) получило вид

    (рис. 77).

    Вернемся к уравнению (1). Оно может служить определением параболы. Напомним ее простейшие свойства. Кривая имеет ось симметрии: если точка удовлетворяет уравнению (1), то точка симметричная точке М относительно оси ординат, также удовлетворяет уравнению (1) - кривая симметрична относительно оси ординат (рис. 76).

    Если , то парабола (1) лежит в верхней полуплоскости , имея с осью абсцисс единственную общую точку О.

    При неограниченном возрастании модуля абсцисс ордината также неограниченно возрастает. Общий вид кривой дай на рис. 76, а.

    Если (рис. 76, б), то кривая расположена в нижней полуплоскости симметрично относительно оси абсцисс к кривой .

    Если перейти к новой системе координат, полученной из старой заменой положительного направления оси ординат на противоположное, то парабола, имеющая в старой системе уравнение , получит в новой системе координат уравнение у . Поэтому при изучении парабол можно ограничиться уравнениями (1), в которых .

    Поменяем, наконец, названия осей, т. е. перейдем к иовой системе координат, в которой осью ординат будет старая ось абсцисс, а осью абсцисс - старая ось ординат. В этой новой системе уравнение (1) запишется в виде

    Или, если число - обозначить через , в виде

    Уравнение (4) называется в аналитической геометрии каноническим уравнением параболы; прямоугольная система координат, в которой данная парабола имеет уравнение (4), называется канонической системой координат (для этой параболы).

    Сейчас мы установим геометрический смысл коэффициента . Для этого берем точку

    называемую фокусом параболы (4), и прямую d, определенную уравнением

    Эта прямая называется директрисой параболы (4) (см. рис. 78).

    Пусть - произвольная точка параболы (4). Из уравнения (4) следует, что Поэтому расстояние точки М от директрисы d есть число

    Расстояние точки М от фокуса F есть

    Но , поэтому

    Итак, все точки М параболы равноудалены от ее фокуса и директрисы:

    Обратно, каждая точка М, удовлетворяющая условию (8), лежит на параболе (4).

    В самом деле,

    Следовательно,

    и, после раскрытия скобок и приведения подобных членов,

    Мы доказали, что каждая парабола (4) есть геометрическое место точек, равноудаленных от фокуса F и от директрисы d этой параболы.

    Вместе с тем мы установили и геометрический смысл коэффициента в уравнении (4): число равно расстоянию между фокусом и директрисой параболы.

    Пусть теперь на плоскости даны произвольно точка F и прямая d, не проходящая через эту точку. Докажем, что существует парабола с фокусом F и директрисой d.

    Для этого проведем через точку F прямую g (рис. 79), перпендикулярную к прямой d; точку пересечения обеих прямых обозначим через D; расстояние (т. е. расстояние между точкой F и прямой d) обозначим через .

    Прямую g превратим в ось, прнняв на ней направление DF в качестве положительного. Эту ось сделаем осью абсцисс прямоугольной системы координат, началом которой является середина О отрезка

    Тогда и прямая d получает уравнение .

    Теперь мы можем в выбранной системе координат написать каноническое уравнение параболы:

    причем точка F будет фокусом, а прямая d - директрисой параболы (4).

    Мы установили выше, что парабола есть геометрическое место точек М, равноудаленных от точки F и прямой d. Итак, мы можем дать такое геометрическое (т. е. не зависящее ни от какой системы координат) определение параболы.

    Определение. Параболой называется геометрическое место точек, равноудаленных от некоторой фиксированной точки («фокуса» параболы) и некоторой фиксированной прямой («директрисы» параболы).